Lead isotope analysis of marine carbonates and seawater by multiple collector ICP-MS

Matthew K. Reuera,*, Edward A. Boyleb,1, Barry C. Grantb,1 \\
a MIT/WHOI Joint Program in Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139, USA \\
b Department of Earth, Atmospheric, and Planetary Sciences, E34-200, Massachusetts Institute of Technology, Cambridge, MA 02139, USA \\

Received 31 July 2002; accepted 30 April 2003

Abstract

A consistent method for stable lead isotope analysis of marine carbonates and seawater is presented, utilizing multiple collector ICP-MS (MC-ICP-MS). This study presents new observations of the large (0.7% amu\(^{-1}\)) time-dependent mass bias determined by thallium normalization, including preferential light ion transmission induced by the acceleration potential and plasma interface (\(\beta = 1.3\) to 0.9). These experiments show equivalent results for three empirical correction laws, and the previously proposed \(\frac{\text{Pb}}{\text{Tl}}\) correction does not improve isotope ratio accuracy under these conditions. External normalization to SRM-981 following the thallium correction provides one simple alternative, and a rationale is provided based on secondary bias effects. With current intensities less than 1.5 \(\times\) \(\times\) 10\(^{-12}\) A, external isotope ratio precision better than 250 ppm for SRM-981 \(207\text{Pb}/206\text{Pb}\) and \(208\text{Pb}/206\text{Pb}\) ratios is observed (2\(\sigma\)). From reconstructed lead isotopic variability in the North Atlantic, this instrumental precision results in a signal-to-noise ratio greater than 100. Matrix effects are significant with concomitant calcium in SRM-981 (280 ppm at 257 \(\mu\)m [Ca]). With the appropriate corrections and minimal concomitants, MC-ICP-MS can reliably determine \(207\text{Pb}/206\text{Pb}\) and \(208\text{Pb}/206\text{Pb}\) ratios of marine carbonates (30 mg) and seawater (160–200 g).

© 2003 Elsevier B.V. All rights reserved.

Keywords: Stable isotopes; Lead isotope ratios; Inductively coupled plasma methods; \(207\text{Pb}/206\text{Pb}\); \(208\text{Pb}/206\text{Pb}\)

1. Introduction

Isotope ratio analysis by multiple collector ICP-MS (MC-ICP-MS) is a promising mass spectrometric technique, and its merits are well established for geochemistry (see reviews by Walder, 1997; Halliday et al., 2000). Previous studies have addressed lead isotope analysis of NIST standard reference materials and standard rock digests (Walder and Freedman, 1992; Hirata, 1996; Belshaw et al., 1998; Rehkämper and Halliday, 1998; White et al., 2000; Thirlwall, 2001, 2002), examining how mass bias, normalization techniques, and sample matrices affect isotope ratio precision and accuracy. Here several new observations are provided for \(207\text{Pb}/206\text{Pb}\) and \(208\text{Pb}/206\text{Pb}\) analyses of marine carbonate and seawater samples. The described method accommodates small sample lead masses (3–6 ng), exhibits favorable precision (\(<\) 250 ppm, 2\(\sigma\)), and provides a consistent and rapid technique for this environmental tracer.
The analytical context for this method should first be considered. The utility of lead isotopes as an anthropogenic tracer was established by Chow and co-workers (Chow and Johnstone, 1965; Chow and Earl, 1970, 1972; Chow et al., 1973, 1975). These studies demonstrated systematic, global-scale isotopic variability among leaded gasoline, coal, and aerosol samples. For example, a 14% range in leaded gasoline $^{206}\text{Pb}/^{207}\text{Pb}$ was observed between Bangkok, Thailand (1.072), and Santiago, Chile (1.238, Chow et al., 1975). The unique isotopic composition of multiple anthropogenic sources has provided new constraints on heavy metal provenance in modern atmospheric, terrestrial, and marine systems (e.g., Flegal et al., 1986; Sturges and Barrie, 1987; Church et al., 1990; Véron et al., 1994; Hamelin et al., 1997; Alleman et al., 1999; Bollhöfer and Rosman, 2001). Lead isotope time series recovered from ice cores (Rosman et al., 1993; Rosman et al., 2000), peat records (Shotyk et al., 1998; Weiss et al., 1999), lake sediment records (Graney et al., 1995), and surface corals (Shen and Boyle, 1987) have also demonstrated significant time-dependent isotopic variability. Two common characteristics of anthropogenic lead isotope analysis are thus low concentrations within complex natural matrices and a large isotopic range.

A second consideration is the difference between MC-ICP-MS and established thermal ionization mass spectrometric (TIMS) techniques. The established advantages of MC-ICP-MS include the ionization of most elements within the inductively coupled plasma (e.g., Fe and Hf) and the introduction of various sample types at atmospheric pressure (e.g., solutions, ablated aerosols, or chromatography isolates). For stable lead isotopes, the principal advantages are greater sample throughput ($n = 4–5 \text{ h}^{-1}$) and fewer preparative steps. This study addresses the possible analytical artifacts pertinent to marine carbonates and seawater and provides the associated isotope ratio precision and accuracy for the Micromass IsoProbe MC-ICP-MS.

2. Methods

Sample preparation followed standard laboratory protocols for trace element analysis, including acid, reagent, and plasticware preparation under Class 100 conditions. Here the specific protocols for lead isotope analysis of seawater and surface corals are briefly described.

2.1. Surface coral and seawater sample preparation

Surface coral samples collected from North Rock, Bermuda (32°29'N, 64°48'W), were cleaned using a modified technique of Shen and Boyle (1988a), removing contaminant organic or oxide phases from the coral aragonite lattice. The modifications to this method include: (1) the use of two rather than three cleaning sequences on coarse aragonite fragments and the 280–700 μm size fraction; and (2) the extension of each oxidative (NaOH–H$_2$O$_2$) and reducing (citric acid–hydrazine) cleaning cycle from 10 to 30 min. The isotopic composition of occluded contaminants does not equal the aragonite lead, creating significant, nonsystematic biases if they are not removed from the aragonite lattice. The success of the cleaning technique was determined for each sample by replicate Pb/Ca analysis of homogenized splits, utilizing isotope dilution ICP-MS and flame AAS at MIT (VG Plasmaquad 2$^+$. The isotope dilution method included direct analysis of dissolved, diluted coral, adding a gravimetrically calibrated ^{204}Pb spike (Oak Ridge National Laboratory) to all samples. Where Pb/Ca replicates did not agree to 2 nmol/mol, samples were reprocessed and reanalyzed, only measuring the isotopic composition of adequately cleaned samples.

Replicate sample analyses cannot eliminate possible elemental or isotopic biases introduced by evenly distributed contaminants not removed by the cleaning process. Two observations, however, suggest this error might be small. First, coral–seawater partition coefficients ($D_p=\frac{[X/\text{Ca}^{2+}]}{[X/\text{Ca}^{2+}]_{\text{seawater}}}$, where X denotes the chemical species of interest) for most elements are close to unity, suggesting minor preferential uptake or exclusion of CaCO$_3$ substituents and low residual contamination (Reuer et al., 2003). Second, isotopic agreement is observed between 1981 coral and 1982 seawater $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ from Bermuda, with a $^{206}\text{Pb}/^{207}\text{Pb}$ offset of 250 ppm (see below). Both field and culture calibration studies are required to best address this issue, but preliminary observations suggest residual contaminant biases are minor relative to the environmental variability.
Moderate volume seawater samples were prepared by the Mg(OH)₂ coprecipitation method (Wu and Boyle, 1997b; Weiss et al., 2000). Larger sample volumes were required (160–240 ml) relative to elemental analysis (1200 µl) given the necessary counting statistics, Faraday cup noise, and low seawater lead concentrations (Wu and Boyle, 1997a). Surface samples were collected with established procedures, including underway sampling with the towed fish technique (see Vink et al., 2000), pole sampling with a polycarbonate bottle clamp, and vane sampling. Hydrocasts utilized the MITESS automated trace element sampler described in Dickey et al. (1998). Seawater lead was preconcentrated by excess Mg(OH)₂ coprecipitation, adding 400 µl of vapor-distilled ammonia to each 40 ml subsample, mixing the precipitate by shaking and inversion, and separating the Mg(OH)₂ (s) by centrifugation. Dissolved aragonite and seawater Mg(OH)₂ (s) concentrates were reduced to dryness in 3-ml Savillex PFTE beakers and redissolved in 400-µl 1.1 N HBr (Seastar).

Lead separation from the sample matrix included established anion exchange techniques described by Kraus and Moore (1953) and Strelow (1978). Mini-columns (75 µl) were constructed from Teflon shrink tubing (4:1 shrink ratio, 9.53 mm, Texloc) and Teflon supports. Eichrom AG-1X8 (chloride form, 200–400 mesh) anion exchange resin was utilized, cleaned for 7 days in triple-distilled 6.0 N HCl with continuous agitation. Before use, the resin was rinsed 20 × in dH₂O and sized by gravitational settling, retaining the intermediate fraction. The loaded resin slurry was then cleaned with 1000-µl 6.0 N HCl and converted to the bromide form with 400-µl 1.1 N HBr. The major cations were eluted with 400-µl 1.1 N HBr, complexing sample lead as PbBr₄²⁻. The resin was converted to the chloride form with 200-µl 2.0 N HCl, and the sample was eluted with 500-µl 6.0 N HCl. Quantitative lead recoveries were observed from the column separation, equal to 99.98% (n = 3) in the 6.0 N HCl fraction.

2 Seawater sample volumes greater than 240 ml could be readily processed by this method to improve signal intensity and the signal-to-blank ratio. The volumes utilized here reflect the 500 ml samples collected by the MITESS system and the measurement of additional elemental or isotopic systems from these bottles.

2.2. MC-ICP-MS configuration

Lead isotope analysis was completed on a Micromass IsoProbe ICP-MS at MIT, including the standard instrumental configuration under Class 100 conditions. General instrumental parameters are given in Table 1. The introduction system includes a Teflon microconcentric nebulizer (Microflow PFA-100, 100 µl min⁻¹, Elemental Scientific), a cyclonic spray chamber cooled to 4 °C (Jacketed Twister, Glass Expansion), and a Fassel quartz torch (Glass Expansion). Experiments with multiple introduction methods showed improved isotope ratio precision with the PFA nebulizer, peristaltic pumping, and small internal diameter pump tubing (0.19 mm ID, Ismatec). This improvement in precision might reflect the constant solution flux relative to natural draw conditions, which can be affected by variations in the argon mass flow controller. The water-cooled interface includes nickel sampling, skimmer, and collimator cones with an accelerating potential of -600 V (at 40% extraction). The accelerated ion beam is axially focused and thermalized within a 6-MHz, RF-only hexapole-collision cell, reducing the energy range of the incoming ions from 30 to approximately 1 V. The theoretical limit for 208Pb thermalization by 40Ar equals 0.1 V. A compromise is required, however, between transmission and the

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Set point</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nebulizer gas</td>
<td>0.905</td>
<td>1 min⁻¹</td>
</tr>
<tr>
<td>Auxiliary gas</td>
<td>0.890</td>
<td>1 min⁻¹</td>
</tr>
<tr>
<td>Cool gas</td>
<td>13.5</td>
<td>1 min⁻¹</td>
</tr>
<tr>
<td>Forward power</td>
<td>1350</td>
<td>W</td>
</tr>
<tr>
<td>Reflected power</td>
<td><3</td>
<td>W</td>
</tr>
<tr>
<td>Expansion Pirani</td>
<td>3.00e – 01</td>
<td>mbar</td>
</tr>
<tr>
<td>Intermediate Pirani</td>
<td>1.00e – 02</td>
<td>mbar</td>
</tr>
<tr>
<td>Analyzer Pirani</td>
<td><0.01</td>
<td>mbar</td>
</tr>
<tr>
<td>Hexapole ion gauge</td>
<td>3.20e – 04</td>
<td>mbar</td>
</tr>
<tr>
<td>Analyzer ion gauge</td>
<td>1.10e – 08</td>
<td>mbar</td>
</tr>
<tr>
<td>Acquisition time</td>
<td>250</td>
<td>s</td>
</tr>
<tr>
<td>Uptake rate</td>
<td>100</td>
<td>µl min⁻¹</td>
</tr>
<tr>
<td>²⁰⁹Bi sensitivity</td>
<td>2.1e+06</td>
<td>cps ppb⁻¹</td>
</tr>
</tbody>
</table>

The hexapole ion gauge pressure includes a collision cell argon gas flow rate of 1.500 ml min⁻¹, and the analyzer pressure has varied from 1.1 × 10⁻⁸ to 2.2 × 10⁻⁸ mbar over 7 months. The acquisition time reflects twenty-five 10-s integrations.
ion energy distribution, increasing the average ion energy to approximately 1 V (Turner et al., 2000). The thermalized ions are then focused by five electrostatic lenses (extraction, Y-focus, Y-slit, Z-focus, Z-slit) with a final acceleration potential of -6000 V. Following the lens stack, the ions are separated by a stigmatic-focusing, Cross geometry magnet reviewed by Turner et al. (2000). Finally, the separated ions are detected with a dynamic multiple collector array, consisting of seven Channeltron electron multipliers, eight Faraday collectors, and one axial Daly detector.

A quantitative estimate of the true analyte intensity (I_i) from the measured intensity (I_m) requires several established corrections (see Thirlwall, 2001), including mass spectral backgrounds associated with the Faraday cup offsets (I_{ms}), the solvent blank (I_s), the instrumental blank (I_i), the procedural blank (I_p)3, isobaric interferences (I_{iso}), and tailing from adjacent masses (± 3 amu, I_{tail}). This can be written as:

$$I_i = I_m - I_{ms} - I_s - I_p - I_{iso} - I_{tail}$$

(1)

The first three corrections (I_{ms}, I_s, and I_i) are determined by on-peak zero (OPZ) analysis for each measurement, continuously monitored to assess sample or standard memory effects. Prior to OPZ measurements, washtout intervals of at least 6 min were used with 0.5 N HNO$_3$ and 0.5 N HCl, monitoring both signal intensity and the isotope ratios. Two procedural blanks were analyzed for every column series ($n=14$), and representative blanks range from 1.2 to 4.9 pg. The isotopic composition of the procedural blank could not be accurately determined by static Faraday collection given the low signal intensity (the calculated 206Pb/207Pb range was 0.832–1.033). No isobaric interference corrections are required for 206Pb, 207Pb, and 208Pb analyses, whereas 204Pb measurements require 204Hg correction via 202Hg. Finally, the tailing correction must include the abundance sensitivity (AS) for each peak (i) three4 mass units above and below the analyte mass, determined by analysis of the monoisotopic 209Bi (Thirlwall, 2001). This is given simply as:

$$I_{tail} = \sum_{i=-3}^{3} I_i \cdot AS_i$$

(2)

where I_i reflects the on-peak intensity ± 3 amu and AS_i denotes the corresponding abundance sensitivity. Static and scanning analyses of 209Bi were completed weekly or following any pressure shift. With an analyzer pressure of 1.1×10^{-8} mbar, the average abundance sensitivities relative to 209Bi are as follows: 2.5 ppm (-3 amu), 4.4 ppm (-2 amu), 13.6 ppm (-1 amu), 6.1 ppm ($+1$ amu), 5.9 ppm ($+2$ amu), and 3.1 ppm ($+3$ amu). These values are stable to ± 2 ppm (2σ) under the same vacuum conditions. Comparable results to Thirlwall (2001) were observed at -1 amu (mass 208; 23.4 ppm; MIT; 21.0 ppm: Royal Holloway) at similar analyzer pressures (2.2×10^{-8} mbar: MIT, 2.5×10^{-8} mbar: Royal Holloway). Systematic correction techniques thus presently exist to account for procedural, reagent, instrumental, and mass spectral contributions.

Finally, the small sample masses analyzed here preclude precise 206Pb/204Pb analysis. With moderate-volume North Atlantic seawater samples (0.160 kg, 38.1 pmol kg$^{-1}$ for 1999) and the parameters given in Table 1, the ion counting statistic for the 206Pb/204Pb ratio is 489 ppm (2σ). The limit does not include Faraday cup noise (~ 700 ppm 2σ at 1.5×10^{-12} A 208Pb) and uncertainties associated with the 204Hg correction. Low signal intensities limit accurate and precise 204Pb ratio analysis under these conditions; the focus of this study will be 207Pb/206Pb and 208Pb/206Pb determinations.

3. Results and discussion

Several MC-ICP-MS experiments are presented, including mass bias effects, isotope ratio precision, and matrix effects. These observations are not necessarily applicable to other instruments, isotopic systems, or interface configurations (e.g., cool plasma, shielded torch). These results provide, however, a
simple and consistent framework for lead isotope ratio analysis by the IsoProbe MC-ICP-MS.

3.1. Mass bias in MC-ICP-MS

Mass discrimination is a well-known phenomenon in ICP-MS systems, resulting from space charge repulsion and ion beam defocusing effects (see review by Niu and Houk, 1996). Space charge effects in ICP-MS generally result in preferential heavy ion transmission: following charge separation between the sampling and skimmer cones, increased positive ion density behind the skimmer repels lighter ions, whereas heavy ions remain axially focused (see Plate 1 in Montaser, 1998). Preferential light ion transmission can also result from space charge effects, dependent upon the ion optics and sample matrix. For example, Beauchemin et al. (1987) observed enhanced 59Co, 63Cu, and 64Zn sensitivity relative to 114Cd and 208Pb in a 0.01 M Na solution (see their Fig. 2c). Elemental bias has also been demonstrated by simulation modeling, ion current observations, ion deposition experiments, and tandem quadrupole TOF observations (Gillson et al., 1988; Chen and Houk, 1996; Allen et al., 1997; Burgoyne et al., 1997). Comparable isotopic observations do not presently exist for MC-ICP-MS systems, requiring empirical corrections to quantify mass discrimination.

Mass bias corrections for TIMS and MC-ICP-MS systems have been successfully developed by double- and triple-spiking methods (see Thirlwall, 2000, 2001 and references therein), quantifying mass discrimination and the true isotopic ratio by comparison of spiked and unspiked samples. An alternative technique for MC-ICP-MS lead isotope analysis is thallium normalization (Longerich et al., 1987). This method relies on concurrent analysis of a thallium isotopic standard, applying the calculated mass bias factor to the lead isotope ratios. Here the exponential empirical correction was assumed, and differences among these corrections will be addressed. For exponential bias, the true ([205]Tl/[203]Tl) ratio can be determined via the measured ratio (m), the mass ratio (M205/M203), and an exponential bias factor (β):

\[
\frac{[205]Tl}{[203]Tl}_t = \left(\frac{[205]Tl}{[203]Tl}_m \right) \left(\frac{M_{205}}{M_{203}} \right)^\beta
\]

Applying the thallium bias factor (βTl) to lead, one can simultaneously correct for instrumental mass discrimination.

To test these assumptions, a stock 32 nM SRM-981 standard was repeatedly analyzed. Mass bias was induced by atypically large adjustments of the nebulizer gas flow rate and the extraction lens potential, motivated by the observations of Burgoyne et al. (1997, see their Fig. 4). The nebulizer flow rate and extraction potential represent two possible tuning parameters of the plasma interface, and these results are not necessarily applicable to other interface variables (torch position, torch power, argon flow rates, or cone positions). These two parameters, however, will directly change the sampling depths, ion optics, and mass bias of the ICP-MS interface. Established blank and background corrections were completed prior to each analysis, and the results are shown in Fig. 1. For optimized instrumental conditions (0.890–0.910 l Ar min\(^{-1}\), 30–40% extraction), the mass bias factor is approximately β = –1.2 (0.7% amu\(^{-1}\)), corresponding to the expected preferential heavy ion transmission. Increased nebulizer flow rates result in reduced sampling depths, diminished solvent loading (via reduced solvent-to-gas ratios with constant peristaltic pumping), and a defocused ion beam. At approximately 0.925 l min\(^{-1}\), significant light ion transmission was observed (β = 0.864). This effect is not strongly correlated to the 208Pb signal intensity (r = –0.72), with approximately constant bias despite a 35% increase in 208Pb intensity from 0.870 to 0.900 l min\(^{-1}\). Second, the extraction potential was reduced, decreasing the ion beam intensity and increasing the mass bias factor (r = –0.99). Both results follow the expected relationship between space charge effects and mass bias: as ion beam intensities drop, greater light ion transmission occurs. The magnitude of this effect, including positive mass bias factors, was unexpected, and a complete explanation requires ion trajectory modeling under comparable conditions.

5 The empirical nature of these corrections is emphasized, based on the complexity of an accelerating, densely charged, high-temperature plasma through the ICP-MS interface.
3.2. Lead isotope ratio accuracy

The mass bias results were then utilized to test the empirical corrections, following the method of Russell et al. (1978). These artificial techniques are not equivalent to standard IsoProbe operating conditions; the large resulting β range, however, provides an improved constraint for the model validation. As shown in Fig. 2, the measured 207Pb/206Pb and 205Tl/203Tl ratios were normalized via the assumed true isotope ratios from Thirlwall (2000) and Dunstan et al. (1980), respectively. As shown in Table 2, best agreement among SRM-981 207Pb/206Pb and 208Pb/206Pb ratios is observed for the 207Pb – 204Pb double-spike (Thirlwall,
2000) and 207Pb–206Pb–204Pb triple-spike (Galer and Abouchami, 1998) TIMS methods; the Thirlwall (2000) double-spike results were selected as the reference ratios for this study. The exponential ($R_t = R_m(M_2/M_1)^b$), power ($R_t = R_m(1 + \beta)^{M_2/M_1}$), and linear ($R_t = R_m[1 + \beta(M_2 - M_1)]$) corrections were then calculated. Studies 1–5 reflect TIMS double- or triple-spike techniques (Hamelin et al., 1985; Woodhead et al., 1995; Todt et al., 1996; Galer and Abouchami, 1998; Thirlwall, 2000), whereas the final seven studies utilize thallium normalization or double-spike techniques with MC-ICP-MS (Hirata, 1996; Rehämmer and Halliday, 1998; Rehämmer and Mezger, 2000; Thirlwall, 2000).

Table 2

<table>
<thead>
<tr>
<th>No.</th>
<th>207Pb/206Pb</th>
<th>2σ</th>
<th>208Pb/206Pb</th>
<th>2σ</th>
<th>n</th>
<th>Reference</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.91469</td>
<td>0.00007</td>
<td>2.16770</td>
<td>0.00021</td>
<td>31</td>
<td>Thirlwall (2000)</td>
<td>207Pb–204Pb double spike</td>
</tr>
<tr>
<td>2</td>
<td>0.91475</td>
<td>0.00004</td>
<td>2.16771</td>
<td>0.00010</td>
<td>60</td>
<td>Galer and Abouchami (1998)</td>
<td>207Pb–206Pb–204Pb triple spike</td>
</tr>
<tr>
<td>3</td>
<td>0.91459</td>
<td>0.00013</td>
<td>2.16701</td>
<td>0.00043</td>
<td>11</td>
<td>Todt et al. (1996)</td>
<td>205Pb–202Pb double spike</td>
</tr>
<tr>
<td>4</td>
<td>0.91468</td>
<td>0.00037</td>
<td>2.16733</td>
<td>0.00052</td>
<td>109</td>
<td>Woodhead et al. (1995)</td>
<td>207Pb–204Pb double spike</td>
</tr>
<tr>
<td>5</td>
<td>0.91472</td>
<td>0.00053</td>
<td>2.16747</td>
<td>0.00144</td>
<td>10</td>
<td>Hamelin et al. (1985)</td>
<td>207Pb–204Pb double spike</td>
</tr>
<tr>
<td>6</td>
<td>0.91472</td>
<td>0.00007</td>
<td>2.16771</td>
<td>0.00050</td>
<td>2</td>
<td>Mean TIMS (1) and (2)</td>
<td>Mean TIMS</td>
</tr>
<tr>
<td>7</td>
<td>0.91488</td>
<td>0.00008</td>
<td>2.16770</td>
<td>0.00024</td>
<td>36</td>
<td>Thirlwall (2000)</td>
<td>207Pb–204Pb double spike</td>
</tr>
<tr>
<td>8</td>
<td>0.91470</td>
<td>0.00016</td>
<td>2.16686</td>
<td>0.00068</td>
<td>25</td>
<td>Thirlwall (2000)</td>
<td>207Pb–204Pb double spike</td>
</tr>
<tr>
<td>9</td>
<td>0.91455</td>
<td>0.00007</td>
<td>2.16693</td>
<td>0.00020</td>
<td>8</td>
<td>Rehämmer and Mezger (2000)</td>
<td>205Pb–203Pb/Tl=2.38890</td>
</tr>
<tr>
<td>10</td>
<td>0.91450</td>
<td>0.00005</td>
<td>2.16589</td>
<td>0.00014</td>
<td>32</td>
<td>Rehämmer and Halliday (1998)</td>
<td>205Pb–203Pb/Tl=2.38705</td>
</tr>
<tr>
<td>11</td>
<td>0.91459</td>
<td>0.00005</td>
<td>2.16629</td>
<td>0.00014</td>
<td>32</td>
<td>Rehämmer and Halliday (1998)</td>
<td>205Pb–203Pb/Tl=2.38710</td>
</tr>
<tr>
<td>12</td>
<td>0.91433</td>
<td>0.00003</td>
<td>2.16469</td>
<td>0.00086</td>
<td>8</td>
<td>Hirata (1996)</td>
<td>205Pb–203Pb/Tl=2.38755</td>
</tr>
<tr>
<td>13</td>
<td>0.91462</td>
<td>0.00004</td>
<td>2.16636</td>
<td>0.00082</td>
<td>8</td>
<td>Hirata (1996)</td>
<td>205Pb–203Pb/Tl=2.38710</td>
</tr>
<tr>
<td>14</td>
<td>0.91460</td>
<td>0.00018</td>
<td>2.16639</td>
<td>0.00304</td>
<td>7</td>
<td>Mean MC-ICP-MS (6) to (12)</td>
<td>207Pb–204Pb double spike</td>
</tr>
<tr>
<td>15</td>
<td>0.91474</td>
<td>0.00042</td>
<td>2.16701</td>
<td>0.00084</td>
<td>12</td>
<td>This study</td>
<td>207Pb–204Pb double spike</td>
</tr>
<tr>
<td>16</td>
<td>0.91472</td>
<td>0.00016</td>
<td>2.16776</td>
<td>0.00052</td>
<td>12</td>
<td>This study</td>
<td>207Pb–204Pb double spike</td>
</tr>
</tbody>
</table>

Note the agreement between Thirlwall (2000) and Galer and Abouchami (1998) for both the 207Pb/206Pb and 208Pb/206Pb ratios. The MC-ICP-MS results exhibit greater uncertainty with respect to 207Pb/206Pb, and our results are within error of the TIMS observations.
culated for a given β range (-1 to 2). No difference is apparent between the linear and exponential models, whereas the power law better fits the $^{207}\text{Pb}/^{206}\text{Pb}$ extrema. For the $^{208}\text{Pb}/^{206}\text{Pb}$ ratio (not shown), the improved power law fit is not observed. The accuracy of the model residuals should not be overstated (here -289 to -101 ppm), as they assume ‘true’ isotopic ratios and equivalent bias factors for thallium and lead. The large standard deviations (220 ppm, 2σ) suggest these interface experiments represent a worst-case scenario, and the three models are comparable under these conditions.

A second consideration is the assumed equivalence of the mass bias factors, β_{Pb} and β_{Tl}. Hirata (1996) observed a linear dependence between mass discrimination and atomic mass (85–208 amu), and improved accuracy was observed with a $\beta_{\text{Pb}}/\beta_{\text{Tl}}$ correction. The Hirata (1996) correction was determined by measuring the slope of the mass bias trend versus atomic mass from ^{85}Rb to ^{208}Pb, then calculating the $\beta_{\text{Pb}}/\beta_{\text{Tl}}$ ratio from the slope and intermediate masses of ^{204}Tl and $^{206.5}\text{Pb}$. To test this method, the $\beta_{\text{Pb}}/\beta_{\text{Tl}}$ ratio was calculated according to Maréchal et al. (1999), shown in Fig. 3 and Table 3. Differences among the four beta ratios are not statistically significant at the 95% confidence interval, and all ratios are within error of unity. In contrast to Hirata (1996), the $\beta_{\text{Pb}}/\beta_{\text{Tl}}$ correction offers slight improvement over standard thallium normalization (Table 4), whereas correction of the ‘true’ $^{205}\text{Tl}/^{203}\text{Tl}$ ratio greatly improves isotope ratio accurac-

Fig. 3. Log transforms of $^{207}\text{Pb}/^{206}\text{Pb}$, $^{208}\text{Pb}/^{206}\text{Pb}$, and $^{205}\text{Tl}/^{203}\text{Tl}$. The solid line corresponds to the theoretical slope and intercept calculated from the assumed true isotopic ratios (see text), whereas the dotted lines reflect type-II linear regressions (York, 1966). The resulting slopes, intercepts, and uncertainties are given in Table 3, and the differences between the observed and theoretical slopes are not significant at the 95% confidence interval. Error bars are $\pm 2\sigma$ standard deviation of internal replicates ($n=25$).

Table 3
SRM-981 mass bias experiment

<table>
<thead>
<tr>
<th>Ratio</th>
<th>(Slope)$_T$</th>
<th>(Slope)$_M$</th>
<th>($\beta_{\text{Pb}}/\beta_{\text{Tl}})_M$</th>
<th>(Intercept)$_T$</th>
<th>(Intercept)$_M$</th>
<th>($\beta_{\text{Pb}}/\beta_{\text{Tl}})_b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{208}/^{206}$</td>
<td>0.98555</td>
<td>0.99191</td>
<td>1.00645</td>
<td>-0.08384</td>
<td>-0.09063</td>
<td>1.00792</td>
</tr>
<tr>
<td>2σ</td>
<td>†</td>
<td>0.00908</td>
<td>0.00921</td>
<td>0.0002</td>
<td>0.00849</td>
<td>0.00126</td>
</tr>
<tr>
<td>$^{207}/^{206}$</td>
<td>0.49413</td>
<td>0.49517</td>
<td>1.0021</td>
<td>-0.5191</td>
<td>-0.52028</td>
<td>1.00273</td>
</tr>
<tr>
<td>2σ</td>
<td>†</td>
<td>0.00995</td>
<td>0.02014</td>
<td>0.00012</td>
<td>0.0093</td>
<td>0.02163</td>
</tr>
</tbody>
</table>

The theoretical (T) slope and intercept for the regression are given, utilizing the isotopic ratios of Dunstan et al. (1980) and Thirlwall (2000) for the intercept. The measured (M) slopes and intercepts are taken from Fig. 3. No uncertainty in the atomic masses is assumed (†), and the 2σ standard deviation for columns 4, 5, and 7 are determined by error propagation.
Here Rx shown in Fig. 1. The anomalously large
the true 205Tl/203Tl correction ofRehka¨mper and Halliday (1998).

An alternative solution is external normalization to
lative mass bias of a sample and known isotopic spike.

Secondary mass bias effects can be directly
nual mass bias of a sample and known isotopic spike.
An alternative solution is external normalization to
SRM-981 following Tl normalization (modified from
Belshaw et al., 1998). This method requires an
thesized ‘true’ isotopic ratio typically determined by
TMS double- or triple-spiking techniques (see references in Table 2). As the accepted SRM-981 isotopic ratios are better constrained, the resulting data sets
must be accordingly renormalized. These corrections
are also significant relative to the analytical precision
(see below), ranging from – 304 to 220 ppm (n = 12)
over 6 months. However, the secondary correction
factors are stable on weekly to monthly time scales,
are precisely determined by daily replicate analyses,
and provide a simple solution to secondary mass bias
effects.

3.3. Lead isotope ratio precision

Instrumental mass bias directly affects isotope ratio
precision, and three separate experiments were com-
pleted for its assessment. First, short-term stability
over 14 days was tested, including multiple glassware,
nebulizer, interface, and hexapole configurations.
These experiments were consistently completed after
90 min of torch ignition, providing an estimate of
worst-case, hourly departures. Following thallium nor-
malization, the first block of four (as thirty 10-s
integrations) was used to determine secondary normal-
ization factors for the remaining three blocks (assum-
ing true ratios from Thirlwall, 2000). The results are
shown in Fig. 4, and the 2σ relative standard deviations for the 207Pb/206Pb and 208Pb/206Pb ratios are 75
and 110 ppm, respectively. Second, SRM-981 was
analyzed 22 times over 16 h to assess daily isotopic
ratio stability, calculating the secondary normalization
factors with bracketing standards. No instrument
parameters were altered during this experiment, and
the resulting deviations are 142 (207Pb/206Pb) and 172
(208Pb/206Pb) ppm. Finally, a stock SRM-981 standard
was analyzed every three samples for 12 analytical
sessions. The resulting daily vector of n SRM-981
analyses was divided into alternating ‘standards’
[1:2:n] and ‘samples’ [2:2:n-1], determining the sec-
ondary normalization factors from the daily ‘standard’
average. No significant trends in the isotopic ratios
were observed for the 12 sessions, and the resulting 2σ
deviations are 177 (207Pb/206Pb) and 240 (208Pb/206Pb)
ppm. This final estimate is the most realistic, because it
includes multiple analytical sessions (12–16 h), vari-
able sample and standard matrices, and possible mem-
ory effects. The respective counting statistics for the
third experiment are 93 and 77 ppm; approximately
one third to one half of the uncertainty can be ascribed
to the limited signal intensity.

The external precision should be considered with-
in the context of this application. Previous lead
isotope analysis from western North Atlantic surface
corals ranged from 1.184 to 1.215 with respect to
207Pb/206Pb, or 25,844 ppm (Shen and Boyle, 1987).
The isotopic range in the modern (1987–1989) North
Atlantic mixed layer is comparable (1.166–1.197,
Véron et al., 1993; Hamelin et al., 1997; Weiss et
al., 2000). The highest external precision estimate
given above (240 ppm) corresponds to a signal-to-
noise ratio of 108. The MC-ICP-MS method shown
here is thus adequate for both surface corals and
seawater, quantitatively resolving modern isotopic
variability.

Table 4

<table>
<thead>
<tr>
<th>Isotope ratio</th>
<th>R_1</th>
<th>A_1</th>
<th>R_2</th>
<th>A_2</th>
<th>R_3</th>
<th>A_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>206Pb/208Pb</td>
<td>2.16507</td>
<td>–1213</td>
<td>2.16512</td>
<td>–1189</td>
<td>2.16774</td>
<td>17</td>
</tr>
<tr>
<td>207Pb/206Pb</td>
<td>0.91446</td>
<td>–256</td>
<td>0.91446</td>
<td>–252</td>
<td>0.91469</td>
<td>4</td>
</tr>
</tbody>
</table>

Here R corresponds to the respective departures (in ppm) from Thirlwall (2000). Experiment 1 represents thallium normalization, experiment 2 reflects the
β_{Tl}/β_{Tl} correction of Hirata (1996), and experiment 3 corresponds to
the true 205Tl/203Tl correction of Rehkämper and Halliday (1998). The anomalously large A values reflect the instrumental conditions shown in Fig. 1.
Sample matrix effects represent an important consideration for MC-ICP-MS. Elevated concomitants generally increase space charge effects and heavy ion transmission in ICP-MS (see above), and the observed magnitude depends upon the analyte–concomitant mass difference, the concomitant concentration, and the nebulizer flow rate (see review by Horlick and Montaser, 1998). For this study, residual Ca\(^{2+}\) following anion exchange chromatography and column organics might affect isotope ratio precision and accuracy. To evaluate this effect, four gravimetric calcium standards (0.260–257 μM) were spiked with SRM-981 and thallium, measuring each isotopic standard four times. The matrix standards were deliberately measured in order of increasing calcium concentration to simulate progressive salt deposition on the cone and skimmer. Instrumental parameters (e.g., nebulizer flow rate and torch position) were not adjusted throughout the analytical session. Calcium-free SRM-981 was analyzed before and after the experiment, and the results are shown in Fig. 5. Significant departures were observed for both isotopic ratios, with the 0.260 μM calcium standard exhibiting a −44 ppm departure from Thirlwall (2000). Higher calcium concentrations yielded greater offsets and diminished external precision, reaching −280 ppm for 257 μM [Ca]. During this experiment, the associated signal intensity was reduced by only 6%: the \(^{208}\text{Pb}\) intensity ranged from 0.170 ± 0.002 to 0.160 ± 0.003 V for the initial and final calcium-free SRM-981 analyses, respectively. Significant mass bias shifts can thus occur with minor intensity variations.

Fig. 4. SRM-981 external precision experiments. The upper panel represents the mean and external 2σ standard deviation for the \(^{207}\text{Pb}/^{206}\text{Pb}\) ratio (75 ppm), and the lower panel reflects the \(^{208}\text{Pb}/^{206}\text{Pb}\) ratio (110 ppm). The solid and dashed lines represent the mean and 2σ deviation of the Thirlwall (2000) TIMS double-spike analysis.
These results cannot be adequately explained by space charge effects, supported by three observations. First, the trend is in the opposite direction from the previous experiments, with increased concomitant calcium concentrations favoring light ion transmission. Second, the final calcium-free SRM-981 departure is -354 ppm, well outside the initial SRM-981 measurement error and in agreement with the previous matrix standard. Third, no mass bias effects have been observed for other isotopic systems, including 100 ppm Na and Al additions to U500 (Z. Palacz, personal communication). These matrix effects, however, are consistent with Fig. 1 and ion beam defocusing, governed in this case by salt deposition on the micro-flow nebulizer, sampling cone, and skimmer. Visible calcium deposition was observed after the experiments, resulting from repeated analysis of high-[Ca] solutions over a four hour period. As the ion flux is reduced through a smaller sampling orifice, the space charge effect might diminish due to lower ion densities, favoring the lighter ion. This result will not be observed, however, if the concomitant does not accumulate on the interface. Thus matrix effects are significant for precise isotope ratio analysis; external normalization with matrix-matched standards, however, offers one possible solution. For seawater and coral analysis, elimination of the major cations by anion exchange chromatography and consistent matrix matching were adopted.

3.5. Method assessment and application

To assess this analytical technique, the SRM-981 accuracy and precision were compared to previous TIMS and MC-ICP-MS determinations. As a reference point, the double- and triple-spiking TIMS methods were first considered, and best agreement between the $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{208}\text{Pb}/^{206}\text{Pb}$ ratios was observed for two studies (Galer and Abouchami, 1998; Thirlwall, 2000). The mean and 2σ standard deviation of the MC-ICP-MS analyses shown here agree with the TIMS result, although the overall external precision is reduced given secondary mass bias effects (see above). The results of this study are comparable to previous MC-ICP-MS SRM-981 measurements, with improved long-term external precision using secondary normalization. However, the signal intensities employed for this study (1.5×10^{-12} A) are at least one order of magnitude lower than previous observations, and reported ^{208}Pb intensities are typically greater than 3×10^{-11} A. Favorable $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{208}\text{Pb}/^{206}\text{Pb}$ external precision is observed at considerably reduced signal intensities.
A brief case study of western North Atlantic surface corals and eastern North Atlantic seawater is provided to evaluate the proposed method. Additional detailed discussion of these North Atlantic results will be presented elsewhere. Surface coral cores (Diploria strigosa and Diploria labyrinthiformis) were collected from North Rock, Bermuda (32°29'N, 64°48'W) in 1983 by E. Druffel and co-workers. This site was selected based on its proximity to the North Atlantic subtropical gyre and no observed local anthropogenic lead influxes (Shen and Boyle, 1988b). The $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ results from 1886 to 2000 are shown in Fig. 6. These results include a seawater time series from the nearby Station S, Bermuda (32°10'N, 64°30'W), and the elemental time series data are provided in Wu and Boyle (1997a). The reconstructed isotopic variability agrees with the previous low-resolution surface coral isotopic record of Shen and Boyle (1988b), including decreasing $^{206}\text{Pb}/^{207}\text{Pb}$ from 1886 to 1922, diminished $^{206}\text{Pb}/^{207}\text{Pb}$ variability from 1922 to 1968, and $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ maxima from 1968 to 1990. Most importantly, a $^{206}\text{Pb}/^{207}\text{Pb}$ difference of 250 ppm is observed between 1981 coral and 1982 seawater samples, supporting their separate processing methods, lead concentrations, and sample matrices. The seawater time series results are also consistent with previous thermal ionization results from the western North Atlantic (Véron et al., 1994; Hamelin et al., 1997). Therefore, the reconstructed North Atlantic $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ variability agrees with previous proxy records and seawater observations from multiple laboratories, best supporting the MC-ICP-MS technique.

Can the surface coral record be corroborated by historical anthropogenic lead variability? The multi-decadal $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ reduction from 1886 is consistent with increased combustion of...
North American coal (Chow and Earl, 1972), smelting of low $^{206}\text{Pb}/^{207}\text{Pb} -$ $^{208}\text{Pb}/^{207}\text{Pb}$ lead ores within North America, and other lead emissions throughout the Industrial Revolution (see review by Nriagu and Pacyna, 1988). Source apportionment during this period is difficult, however, given the similar $^{206}\text{Pb}/^{207}\text{Pb} -$ $^{208}\text{Pb}/^{207}\text{Pb}$ composition of the primary US lead ores and North American coals (e.g., Chow et al., 1975). Elevated $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ ratios from 1968 to 1990 is supported by a similar isotopic transition observed in San Diego aerosols (Chow et al., 1975), High Sierra lake sediments (Shirahata et al., 1980), and Chesapeake Bay sediments (Marcantonio et al., 2002). The increased $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ ratios can be linked to increased lead ore production from the southeast Missouri district: this region accounted for 40% of total US lead ore production in 1966, increasing to 93% in 1982 (United States Bureau of Mines, 1983). Given the elevated $^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ signature of southeast Missouri ores (1.303 for $^{208}\text{Pb}/^{207}\text{Pb}$, Brown, 1967) and predominant US leaded gasoline consumption (80% with respect to North America and Europe, Wu and Boyle, 1997a), a corresponding North Atlantic isotopic shift is possible. As the subsequent $^{206}\text{Pb}/^{207}\text{Pb}$ reduction from 1982 to 2000 was not observed in recent Chesapeake Bay sediments (Marcantonio et al., 2002), one possible explanation is increased low-$^{206}\text{Pb}/^{207}\text{Pb}$ and $^{208}\text{Pb}/^{207}\text{Pb}$ European lead fluxes to the North Atlantic, consistent with higher relative European leaded gasoline consumption from 1982 (41%) to 1990 (74%, Wu and Boyle, 1997a). Therefore, the Bermuda coral record is consistent with historical patterns of anthropogenic lead fluxes to the North Atlantic and other proxy records.

The historical isotopic variability must have a corresponding seawater signature given the multi-decadal residence time of deep water lead estimated from $^{226}\text{Ra} -$ ^{210}Pb disequilibria. For example, Bacon et al. (1976) estimated integrated lead residence times of 20–93 years for six equatorial Atlantic stations (451–5003 m). To constrain the anthropogenic isotopic signature, seawater samples were collected from the eastern North Atlantic in 1999 (31°0′N, 31°0′W, R/V Endeavor-328), and the $^{208}\text{Pb}/^{207}\text{Pb}$ and [Pb] water column profiles are shown in Fig. 7. Elemental and isotopic analyses were completed on aliquots taken from the same sample bottles. First, the $^{208}\text{Pb}/^{207}\text{Pb}$ composition of eastern North Atlantic deep water (ca. 1.18) is significantly less than pre-industrial $^{208}\text{Pb}/^{207}\text{Pb}$ estimated from the coral record (1.2106 ± 0.0026, see Fig. 6), implying addition of recent anthropogenic lead. Second, a $^{208}\text{Pb}/^{207}\text{Pb}$ maximum is observed at 586 m, resulting from the recent $^{208}\text{Pb}/^{207}\text{Pb}$ reduction and its delayed penetration to older water masses. The formation of this isotopic maximum is best shown by the western North Atlantic upper ocean $^{206}\text{Pb}/^{207}\text{Pb}$ time series (Fig. 8), including five profiles from 1984 to 1998. Note the shallower penetration depth of the $^{206}\text{Pb}/^{207}\text{Pb}$ maximum relative to the [Pb] profile, a possible consequence of the 10-year lag between the isotopic (1968–1990) and elemental (1947–1990, not shown) anthropogenic lead maxima and the shorter duration of the isotopic transient (22 versus 43 years). Thus the eastern North Atlantic seawater observations are consistent with the recon-
constructed isotopic variability and the western North Atlantic lead isotope profiles.

4. Conclusions

This analytical method represents a promising technique for lead isotope analysis. With signal intensities less than 1.5×10^{-12} A, external precision for the $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{208}\text{Pb}/^{206}\text{Pb}$ ratios are consistently less than 250 ppm, ranging from 75 to 177 ppm for $^{207}\text{Pb}/^{206}\text{Pb}$ (2σ). Utilizing both thallium normalization and external correction to SRM-981, isotope ratio accuracy better than 250 ppm is possible, and the correction factors are stable on weekly to monthly time scales. For a typical analytical session (12–16 h), 30 samples and 12 standards can be analyzed. The MC-ICP-MS method provides a useful, rapid, and consistent method for $^{207}\text{Pb}/^{206}\text{Pb}$ and $^{208}\text{Pb}/^{206}\text{Pb}$ analysis of seawater and marine carbonates.

Acknowledgements

The suggestions and comments of Zenon Palacz and Simon Meffan-Main, Micromass UK, are gratefully acknowledged. Constructive reviews by Martin Frank and Jan Kosler also improved the quality of this manuscript. This work was supported by National Science Foundation grant OCE-0002273 to EAB. MKR is the recipient of a National Science Foundation Graduate Research Fellowship. [PD]

Appendix A

Mass bias in MC-ICP-MS has multiple potential sources, including the plasma interface, the ion optics, and the detector array. Here one rationale is presented for secondary bias effects, assuming the exponential mass bias law. This argument demonstrates the relative importance of the slope and intercept terms shown in Fig. 9. In the simplest case, variations in ion detection (e.g., collector efficiencies, amplifier

Fig. 8. Western North Atlantic thermocline $^{206}\text{Pb}/^{207}\text{Pb}$ evolution: 1984–1998. The profile data are from Shen and Boyle (1988b, sampled in 1984 at Station S, 32°2′N, 64°30′W), Sherrell et al. (1992, sampled in 1988 near Station S, 32°0′N, 64°10′W), Véron et al. (1993, sampled in 1989 at BATS, 31°5′N, 64°1′W), and this study (sampled in 1998 at 33°42′N, 57°40′W). Differences among site locations should be considered when interpreting these profiles. Note the consistent $^{206}\text{Pb}/^{207}\text{Pb}$ thermocline reduction and the isotopic maximum (ca. 800 m) in the 1998 profile.

Fig. 9. Secondary bias correction for MC-ICP-MS, following Fig. 3. The solid line corresponds to the simplest case, where $\beta_{\text{Tl}} = \beta_{\text{Tl}}$, the dashed line includes a $\beta_{\text{Tl}}/\beta_{\text{Tl}}$ correction following Hirata (1996), and the dotted line reflects a secondary bias correction. Error bars are given in Fig. 3 and omitted for clarity.
gains, or ion optics) introduce a secondary bias factor into Eq. (3):

\[
\frac{205\text{Tl}}{203\text{Tl}} = \frac{205\text{Tl}}{203\text{Tl}}_m \left(\frac{M_{205}}{M_{203}} \right)^\beta z_1
\]

where \(z_1\) corresponds to an arbitrary offset between two masses, and each isotope pair includes a separate gain factor. Collector efficiencies and amplifier gains are generally corrected by repeated analysis of multiple isotopic standards and constant current gain calibrations, respectively. However, improper focusing of the optical plane (K. Collerson, personal communication) and additional artifacts might introduce a secondary bias factor. For brevity, the atomic mass term for \(205\text{Tl}/203\text{Tl}\) and \(208\text{Pb}/206\text{Pb}\) (a constant) is assigned a new variable, \(\tau\):

\[
\tau = \ln \left(\frac{M_{205}}{M_{203}} \right) / \ln \left(\frac{M_{208}}{M_{206}} \right)
\]

Rewriting the Maréchal et al. (1999) derivation with the secondary bias factors for \(205\text{Tl}/203\text{Tl} (z_1)\) and \(208\text{Pb}/206\text{Pb} (z_2)\), one obtains:

\[
\ln \left(\frac{208\text{Pb}}{206\text{Pb}} \right) = \frac{1}{\tau} \left[\frac{\beta_{\text{Pb}}}{\beta_{\text{Tl}}} \left(\frac{205\text{Tl}}{203\text{Tl}} \right)_m \right] + \left[\ln \left(\frac{208\text{Pb}}{206\text{Pb}} \right) - \ln (z_2) \right]_f - \frac{1}{\tau} \frac{\beta_{\text{Pb}}}{\beta_{\text{Tl}}} \left[\ln \left(\frac{205\text{Tl}}{203\text{Tl}} \right) - \ln (z_1) \right]
\]

where \(z_1\) and \(z_2\) reflect the \(205\text{Tl}/203\text{Tl}\) and \(208\text{Pb}/206\text{Pb}\) secondary factors, respectively. As shown by Maréchal et al. (1999), this equation describes a line in the \(\ln(205\text{Tl}/203\text{Tl}) - \ln(208\text{Pb}/206\text{Pb})\) domain, with the two arguments on the right-hand side corresponding to the slope and intercept terms, respectively. The primary result of Eq. (6) is the secondary factors are present only in the intercept term, graphically shown in Fig. 9. If one assumes \(\beta_{\text{Pb}} = \beta_{\text{Tl}}\) for the secondary correction (Eq. 6), the slopes of the \(\beta_{\text{Pb}} = \beta_{\text{Tl}}\) and secondary correction lines are equal by definition (\(m = 1/\tau = 0.9855\)) and within the 95% confidence interval of the observations (\(m = 0.9919 \pm 0.0090\)), providing additional evidence for the secondary bias. This difference provides a simple rationale for isotope ratio offsets observed in previous studies and the \(205\text{Tl}/203\text{Tl}\) optimization technique of Rehkämper and Halliday (1998). Secondary mass bias might also explain some of the 400 ppm amu\(^{-1}\) error observed by Thirlwall (2002) between \(207\text{Pb}/204\text{Pb}\) double-spiked and Tl-normalized SRM-981 analyses. Multiple independent correction techniques can account for this secondary bias effect, including double-spiking techniques, \(205\text{Tl}/203\text{Tl}\) optimization, and secondary SRM-981 normalization.

References

Chow, T.J., Snyder, C.B., Earl, J.L., 1975. Isotope ratios of lead as

