The composition of dissolved iron in the dusty surface ocean: An exploration using size-fractionated iron-binding ligands

Jessica N. Fitzsimmons, Randelle M. Bundy, Sherain N. Al-Subial, Katherine A. Barbeau, Edward A. Boyle

Abstract

The size partitioning of dissolved iron and organic iron-binding ligands into soluble and colloidal phases was investigated in the upper 150 m of two stations along the GA03 U.S. GEOTRACES North Atlantic transect. The size fractionation was completed using cross-flow filtration methods, followed by analysis by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) for iron and competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) for iron-binding ligands. On average, 80% of the 0.1–0.65 nM dissolved iron (<0.2 µm) was partitioned into the colloidal iron (cFe) size fraction (10 kDa < cFe < 0.2 µm), as expected for areas of the ocean underlying a dust plume. The 1.3–2.0 nM strong organic-iron-binding ligands, however, overwhelmingly (75–77%) fell into the soluble size fraction (~10 kDa). As a result, the dissolved iron size fractionation at equilibrium using the observed ligand partitioning did not accurately predict the iron partitioning into colloidal and soluble pools. This suggests that either a portion of colloidal ligands is missed by current electrochemical methods because they react with iron more slowly than the equilibration time of our CLE-ACSV method, or part of the observed colloidal iron is actually inorganic in composition and thus cannot be predicted by our model of unbound iron-binding ligands. This potentially contradicts the prevailing view that greater than >90% of dissolved iron in the ocean is organically complexed. Disentangling the chemical form of iron in the upper ocean has important implications for surface ocean biogeochemistry and may affect iron uptake by phytoplankton.

1. Introduction

Iron (Fe) is known to limit primary production in large portions of the global ocean (Boyd et al., 2007; Martin et al., 1994; Moore et al., 2002), much of the exploration of marine Fe biogeochemistry is focused on the association between Fe fluxes in the surface ocean and biological uptake of dissolved Fe by microorganisms. The utilization of Fe during photosynthesis, nitrogen fixation, and respiration (Morel et al., 2003; Sunda, 2012) unequivocally links Fe biogeochemistry to the global carbon cycle and ultimately climate. However the conversion of dissolved Fe over the last several decades. Dissolved Fe (dFe, here defined as <0.2 µm) has a broad size distribution composed of both “truly dissolved” soluble Fe (sFe < 10 kDa) and “very small particulate” colloidal Fe (10 kDa < cFe < 0.2 µm) size fractions, with colloidal Fe contributing 0–90% of total dFe across the global ocean (Bergquist et al., 2007; Chever et al., 2010; Fitzsimmons and Boyle, 2014b; Fitzsimmons et al., in press; Nishioka et al., 2001; Ussher et al., 2010; Wu et al., 2001). Incubation studies have shown that while a limited number of cFe forms are highly bioavailable (such as exopolymeric saccharides, Hassler et al., 2011b), sFe is typically preferred and is taken into the cell much faster than cFe (Chen et al., 2003; Chen and Wang, 2001; Wang and Dei, 2003). Crystalline inorganic cFe (such as nanoparticulate Fe oxyhydroxide) is not directly available to marine phytoplankton at all (Rich and Morel, 1990; Wells et al., 1983), although freshly precipitated amorphous cFe assumes. Processes such as scavenging/precipitation, Fe exchange, and photochemistry are sensitive to and responsible for controlling the physicochemical speciation of Fe, and thus both the chemical reactivity and fate of dissolved Fe are altered at each step along its transformation pathway.
nanoparticles have been found to be somewhat bioavailable to coastal species (Kuma and Matsunaga, 1995). In addition to this physical description of dFe speciation, studies using competitive ligand exchange electrochemical measurements have suggested that > 99% of marine dFe, including both soluble and colloidal sized species, is complexed by organic ligands (Rue and Bruland, 1995; van den Berg, 1995; Wu and Luther, 1995). It is generally accepted that it is this binding of marine Fe by organic complexes that bolsters dFe concentrations above the ~0.1 nM inorganic solubility limits of organic-free seawater (Liu and Millero, 2002; Millero, 1998). While a few marine Fe-binding organic ligands have been identified as hydroxamate siderophores (Mawji et al., 2011; Velasquez et al., 2011; Vraspir and Butler, 2009), structurally characterized ligands only comprise a small percentage of the total dFe pool (~5%), and in general the identity of marine Fe-binding ligands is largely unknown (Gledhill and Buck, 2012).

However, the finding that nearly all marine dFe is organically bound is only an inference that relies on the assumption of thermodynamic equilibrium between dFe and dissolved Fe-binding ligands during electrochemical analysis and in the open ocean. Additionally, electrochemical characterization of Fe-binding ligands is somewhat limited, as only the Fe-binding ligands that are kinetically labile over the period of equilibrium with the added ligand can be detected, causing any refractory forms of dFe to be measured as a strong, Fe-bound ligand. In fact, Town and van Leeuwen (2005) asserted that kinetic limitation should prohibit many of the Fe-complexes detected by electrochemistry from being organic in composition, which precipitated an active debate on what is actually measured in competitive ligand exchange electrochemical measurements. Despite these shortcomings, electrochemical measurements are currently the predominant source of information on the chemical speciation of marine dFe, since almost no studies have conducted direct chemical speciation measurements, largely due to analytical hurdles. One analysis of colloidal Fe composition by energy dispersive spectroscopy showed that open ocean cFe is mostly organically bound (Wells and Goldberg, 1992), while in contrast a recent study using synchrotron technology demonstrated that a portion of the surface colloidal Fe underlying dust plumes in the Southern Ocean is inorganic, composed of tiny fragments of magnetite (von der Heyden et al., 2012). Thus, while the long-standing assumption is that the overwhelming majority of dFe is bound by strong organic Fe-binding ligands, there is a possibility that some dFe, especially in the colloidal phase, is inorganically bound (nanoparticulate). This might be especially true in regions where continental Fe sources are abundant, such as underlying dust plumes, downstream of hydrothermal vents, near the continental margin, and in regions containing glacial meltwater (Fitzsimmons et al., in press).

The chemical composition of dFe influences productivity the most in the upper ocean where phytoplankton are active, and simultaneously the surface ocean receives atmospheric dust deposition of Fe, arguably the most significant Fe input to the ocean (Jickells et al., 2005; Mahowald et al., 2005). The solubility of aerosol Fe is variable and depends on a suite of factors including aerosol composition, source (anthropogenic or crustal), and size, as well as seawater pH and Fe-binding ligand concentration (Baker and Croot, 2010). Studies of the size partitioning of dFe have consistently shown that in the surface ocean underlying dust plumes, dFe is predominantly colloidal in size (Bergquist et al., 2007; Fitzsimmons and Boyle, 2014b; Fitzsimmons et al., in press; Üssher et al., 2010; Wu et al., 2001), while in the surface ocean of low-dust regions, the smaller soluble size fraction dominates the dFe pool (Boyé et al., 2010; Chever et al., 2010; Nishioka et al., 2003; Wells, 2003). Colloidal Fe has also been shown to be the dominant Fe size fraction yielded in seawater leaches of natural dust (Aguilar-Islas and Mahalek, 2013; Aguilar-Islas et al., 2010).

These patterns raise two important questions: what is the physicochemical speciation of the abundant cFe in the surface ocean after recent dust deposition, and how much of this dust-derived cFe is bioavailable? It is possible for the dust-derived surface cFe maximum to have any of three possible chemical compositions: Fe bound by colloidal-sized organic ligands after solubilization from dust, colloidal-sized fragments of dust that physically separated from aerosol particles upon impact with the surface ocean (resulting in an inorganic cFe composition of the same composition as the dust), or Fe that was initially solubilized from dust in the surface ocean but then re-precipitated in situ and aggregated to colloidal size (also resulting in an inorganic cFe composition, presumably amorphous Fe oxyhydroxides and mixed organic/inorganic precipitates). Each of these three Fe forms has a unique chemical liability and thus would have a different propensity for scavenging, aggregation, or biological uptake. Thus, the distinction between these physicochemical forms is at the crux of the problem linking dust deposition to biological uptake of dFe.

In this paper, we explore the physicochemical speciation of dFe in the upper 150 m of the high-dust North Atlantic Ocean where dFe falls predominantly into the colloidal size fraction, as is typical of dusty marine environments (Fitzsimmons et al., in press). Using an analysis of the Fe-binding ligand concentration and strength in both the soluble and dissolved Fe pools, we aim to consider whether there could be a natural inorganic component to the colloidal Fe pool of the surface ocean of this dusty environment, which could provide an exception to the prevailing view that >99.9% of dFe is believed to be bound by organic ligands.

2. Methods
2.1. Sample collection

Seawater samples from the upper 150 m of the ocean were collected from two stations on the U.S. GEOTRACES GA03 North Atlantic Zonal Transect 2011 cruise (Nov–Dec 2011): Station 10 at 31.933°N, 64.733°W near the Bermuda Atlantic Time Series (BATS) site and Station 23 at 18.39°N, 26.765°W near the Cape Verde Islands (Fig. 1). Hydrographic parameters defining these regions were measured using a Seabird SBE9 + CTD and an SBE43 dissolved oxygen sensor, which was calibrated by Winkler titrations (Langdon, 2010). Trace metal clean seawater was collected using the U.S. GEOTRACES GO-FLO rosette by the methods described in Cutter and Bruland (2012). Briefly, GO-FLO bottles were individually carried into an ISO 5-rated clean van, where the seawater was filtered through pre-cleaned 0.2 μm Pall Acropak-200™ Supor® capsule filters under ~0.4 atm of HEPA-filtered air. Surface samples were collected using the GeoFish system (Bruland et al., 2005), which employs all-perfluorooalkoxy alkane (PFA) tubing attached to a vane that coated at ~3 m depth while suspended from a boom off the starboard side of the ship during forward ship motion of up to 12 knots. An all-PFA diaphragm pump drew clean seawater through this system at ~0.5 atm pressure, and filtration was completed first through a 0.45 μm Osmonics (Teflon™, MSI) filter and then through a 0.2 μm polycarbonate track etched filter mesh held in a polypropylene housing (Nuclepore™). Filters were taken into acid cleaned 4 L low density polyethylene (LDPE) bottles for Fe concentration analysis and into 500 mL fluorinated polyethylene (FLPE) bottles for the dFe-binding ligand analysis. LDPE and HDPE bottles were cleaned in 1 M reagent grade HCl, including an overnight heating to 60 °C, after which they were rinsed with pH 2 ultrapure acid until use (Fitzsimmons and Boyle, 2012). FLPE bottles were cleaned in 3 M trace metal grade HCl for a month and then were conditioned with ultra clean Milli-Q water for more than a month prior to sample collection in order to remove all acid residues (Buck et al., 2012).

To collect the sFe fraction (~10 kDa), the remainder of the 4 L filtrate was immediately ultrafiltered through an all-Teflon cross-flow filtration (CFF) system in static mode (CFF filter cleaning and ultrafiltration protocol described in detail in Fitzsimmons and Boyle, 2014a). Briefly, a Millipore Pellicon XL (PLCC) 10 kDa regenerated cellulose CFF membrane was employed, and 300–350 mL of sample seawater was first
flushed through the acid-cleaned system to condition the membrane and CFF tubing against Fe sorption, after which the permeate stream was collected as the sFe or sFe-ligand sample. After 0.2 μm filtration and 10 kDa ultrafiltration, Fe-binding ligand samples were frozen unacidified until analysis, and all Fe concentration samples were acidified to pH 2 using 6 N hydrochloric acid that had been purified from reagent grade by four distillations in a Vycor still (Fe concentration ~ 0.1 nmol/kg).

Additional seawater for the determination of the mass balance of Fe-binding ligands through the CFF system was collected from the surface Pacific Ocean at 22.75°N, 158°W (Station ALOHA) on 19 July 2013 on the HOE-Phor-II cruise supported by the Center for Microbial Oceanography: Research and Education (C-MORE). Seawater was pumped from the HOE-PhoR-II cruise supported by the Center for Microbial Oceanography: Research and Education (C-MORE). Seawater was pumped from the surface ocean at the SAFe Station that has a known, low-Fe concentration (0.05 nmol/kg). The procedural blank for the determination of the mass balance of Fe-binding ligands following CFF was determined on the 15 m Station ALOHA seawater in order to assess the potential loss of ligands during this ultrafiltration. Next, 10 mL sample aliquots were buffered to pH 8.2 (NBS scale) with a borate-ammonium buffer in PFA vials (Savillex) that had been previously conditioned to the anticipated Fe concentration. Titrations were made at concentrations ranging from 0 to 7.5 nM and were allowed to equilibrate for 0.5 h before the titration of the added ligand, salicylaldoxime (SA), at concentrations of 25 or 32.3 μM (αFeSA = 60 or 100). After a 15 minute equilibration with SA, the Fe(SA)2 complex was adsorbed to the mercury drop at 0 V for 2–5 min and then stripped at 0.03 V/s using differential pulse mode to a final potential of ~0.85 V. Raw titration data were interpreted for their Fe-binding ligand concentration ([L]) and ligand conditional stability constants (Kcond[L]) using the van den Berg/Ružič (1982; van den Berg, 1982) and the Scatchard (Mantoura and Riley, 1975; Scatchard, 1949) linearization techniques, the results of which were averaged to obtain the reported values and error estimates. Sensitivities were determined by internal calibration at the end of the titration, when all ligands are titrated. An αFe of 1010 was assumed in the Fe propidication calculations. Note here that all K values listed in this paper are conditional stability constants even when the “Kcond” designation has been dropped for convenience.

2.2. Fe analyses

3–10 months after acidification, dFe and sFe samples were analyzed in triplicate for their Fe concentration at MIT by isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS) on a hexapole collision cell Isotope multi-collector ICP-MS (Lee et al., 2011). The ID-ICP-MS method employs a 56Fe-spike and batch preconcentration with nitritrolactacetate resin (NTA, Qiagen). cFe was calculated as the difference between dFe and sFe. Fe procedural blanks were measured by many repeat analyses of 300 μL aliquots of a large volume seawater sample taken from the surface ocean at the SAFe Station that has a known, low-Fe concentration (0.05 nmol/kg). The procedural blanks averaged 0.044 nmol/kg with a typical standard deviation over a single day’s analysis of 0.009 nmol/kg; thus, the reported detection limit is 0.027 nmol/kg. Comprehensive lab analyses of the SAFe S seawater for dFe during the period of these analyses averaged 0.101 ± 0.009 nmol/kg (bottles 17 and 318, n = 6), which agrees well with the consensus value of 0.093 ± 0.008 nmol/kg. Similarly, SAFe D2 standard for dFe during the period of these analyses averaged 0.911 ± 0.018 nmol/kg (bottle 446, ±1SD, n = 15), which also agree well with the consensus value of 0.933 ± 0.032 nmol/kg. Consensus values cited here were updated in May 2013 (www.geotraces.org/science/intercalibration).

2.3. Fe-binding ligand analyses

Measurements of dFe and sFe-binding ligand concentrations and binding strengths were made by competitive ligand exchange-adsorptive cathodic stripping voltammetry (CLE-ACSV) on a BioAnalytical Systems (BASi) Controlled Growth Mercury Electrode coupled to a BASi Episil e2 voltammetric analyzer by the methods described in Buck et al. (2007). Briefly, samples stored frozen for 4–12 months since collection were gently thawed at 4 °C and then shaken vigorously before analysis. Next, 10 mL sample aliquots were buffered to pH 8.2 (NBS scale) with a borate-ammonium buffer in PFA vials (Savillex) that had been previously conditioned to the anticipated Fe concentration. Titrations were made at concentrations ranging from 0 to 7.5 nM and were allowed to equilibrate for 0.5 h before the addition of the added ligand, salicylaldoxime (SA), at concentrations of 25 or 32.3 μM (αFeSA = 60 or 100). After a 15 minute equilibration with SA, the Fe(SA)2 complex was adsorbed to the mercury drop at 0 V for 2–5 min and then stripped at 0.03 V/s using differential pulse mode to a final potential of ~0.85 V. Raw titration data were interpreted for their Fe-binding ligand concentration ([L]) and ligand conditional stability constants (Kcond[L]) using the van den Berg/Ružič (1982; van den Berg, 1982) and the Scatchard (Mantoura and Riley, 1975; Scatchard, 1949) linearization techniques, the results of which were averaged to obtain the reported values and error estimates. Sensitivities were determined by internal calibration at the end of the titration, when all ligands are titrated. An αFe of 1010 was assumed in the Fe speciation calculations. Note here that all K values listed in this paper are conditional stability constants even when the “Kcond” designation has been dropped for convenience.

2.4. Fe-ligand mass balance determination

The mass balance of Fe-binding ligands following CFF was determined on the 15 m Station ALOHA seawater in order to assess the potential loss of ligands during this ultrafiltration, since ~25–30% loss of dFe has been observed using the same system (Fitzsimmons and Boyle, 2014a). Station ALOHA samples for Fe concentration and Fe-binding ligand concentration and strength were collected and analyzed from the dissolved (<0.2 μm), CFF permeate (assumed to be sFe), and CFF retentate (containing some sFe and some cFe) streams. With the permeate and retentate flow rates calibrated identically at 12.5 mL/min each, the concentration factor (CF) in static mode was calculated to be 2.0 using the following equation:

\[
\text{CF} = \frac{\text{initial sample volume}}{\text{final retentate volume}} = \frac{\text{permeate volume} + \text{retentate volume}}{\text{retentate volume}}
\]

Under ideal permeation conditions where the membrane does not preferentially retain any soluble compounds (permeation coefficient = 1, Schlosser and Croot, 2008), the permeate solution should define the sFe and the sFe-binding ligand concentrations (<10 kDa). However, in
solutions containing cFe, the Fe and Fe ligand concentrations in the retentate solution must be corrected for the presence of sFe and the degree of CFF concentration in order to calculate the true cFe and cFe-ligand concentrations, as follows:

$$cFe = \frac{[Fe]_{\text{retentate}} - [Fe]_{\text{permeate}}}{CF}.$$

(2)

To determine mass balance, the sFe (permeate) and cFe (Eq. (2)) concentrations were compared to the dFe (<0.2 μm solution originally fed into the CFF system) concentration, and the same was completed for the Fe-binding ligand concentrations.

3. Results

Large volume seawater samples containing the dissolved (<0.2 μm) and soluble (<10 kDa) Fe size fractions were collected in two regions of the North Atlantic Ocean (Fig. 1): the region near the Cape Verde Islands (Station 23) and the subtropical gyre region near Bermuda (Station 10). These locations were chosen for two reasons. First, we aimed to sample various dust loading and composition in the surface ocean: Station 10 near Bermuda experienced ~2 ng/m³ aerosol Fe loadings with a variable dust loading and composition in the surface ocean: Station 10 (Station 23) and the subtropical gyre region near Bermuda (Station 10).

3.1. Size partitioning of dissolved Fe and Fe-binding ligands

We evaluated the size-partitioning of dissolved Fe and Fe-binding ligands in the upper 150 m of the North Atlantic Ocean in order to explore the physicochemical speciation of dust-derived dFe phases. As shown in Fig. 3, dFe concentrations were elevated (<0.4 nM) in the surface ocean of both stations, and dFe was ~80% partitioned into the colloidal size fraction (10 kDa < cFe < 0.2 μm). This surface dominance of dFe by colloidal-sized species was consistent across the entire GA03 North Atlantic transect (Fitzsimmons et al., in press), regardless of relative dust Fe loading so long as dust was abundant (minimum Fe

Fig. 2. Hydrography of the two North Atlantic study sites. The CTD traces from relevant sample depths are indicated in (a) for Station 10 near Bermuda and (b) for Station 23 near Cape Verde.
concentrations in aerosols of 1 ng/m³; Shelley et al., in review). This was used as evidence that aerosol-derived Fe is preferentially maintained in the colloidal size fraction, consistent with other studies demonstrating that cFe dominates in dust-dominated surface ocean regions (Bergquist et al., 2007; Fitzsimmons and Boyle, 2014b; Wu et al., 2001). Below the surface at the 70–90 m deep chlorophyll maximum (DCM), cFe decreased to a minimum concentration, another feature typical of North Atlantic dFe size partitioning (Fitzsimmons et al., in press).

Organic Fe-binding ligands, however, were overwhelmingly partitioned into the soluble size fraction (Fig. 3, Tables 1 and 2). Two ligand pools were detected at each of the depths measured (L1 is the stronger ligand class, L2 is weaker, and LT = L1 + L2), and Fe ligand

Table 1

<table>
<thead>
<tr>
<th>Station</th>
<th>Size fraction</th>
<th>Depth [m]</th>
<th>[Fe] nmol L⁻¹</th>
<th>+/−</th>
<th>[L1] nmol L⁻¹</th>
<th>+/−</th>
<th>log K₁</th>
<th>+/−</th>
<th>[L2] nmol L⁻¹</th>
<th>+/−</th>
<th>log K₂</th>
<th>+/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Soluble</td>
<td>3</td>
<td>0.089</td>
<td>0.003</td>
<td>1.51</td>
<td>0.13</td>
<td>12.78</td>
<td>0.03</td>
<td>1.10</td>
<td>0.02</td>
<td>10.91</td>
<td>0.28</td>
</tr>
<tr>
<td>10</td>
<td>Dissolved</td>
<td>3</td>
<td>0.541</td>
<td>0.010</td>
<td>1.72</td>
<td>0.26</td>
<td>12.87</td>
<td>0.16</td>
<td>1.22</td>
<td>0.04</td>
<td>11.59</td>
<td>0.26</td>
</tr>
<tr>
<td>10</td>
<td>Soluble</td>
<td>46</td>
<td>0.105</td>
<td>0.036</td>
<td>2.07</td>
<td>0.15</td>
<td>12.41</td>
<td>0.05</td>
<td>3.45</td>
<td>0.27</td>
<td>10.93</td>
<td>0.73</td>
</tr>
<tr>
<td>10</td>
<td>Dissolved</td>
<td>46</td>
<td>0.642</td>
<td>0.001</td>
<td>2.40</td>
<td>0.62</td>
<td>12.32</td>
<td>0.18</td>
<td>4.33</td>
<td>0.01</td>
<td>10.68</td>
<td>0.64</td>
</tr>
<tr>
<td>10</td>
<td>Soluble</td>
<td>62</td>
<td>0.098</td>
<td>0.002</td>
<td>1.68</td>
<td>0.01</td>
<td>12.71</td>
<td>0.74</td>
<td>4.58</td>
<td>0.54</td>
<td>11.31</td>
<td>0.38</td>
</tr>
<tr>
<td>10</td>
<td>Dissolved</td>
<td>62</td>
<td>0.559</td>
<td>0.004</td>
<td>2.03</td>
<td>0.20</td>
<td>12.84</td>
<td>0.25</td>
<td>6.54</td>
<td>0.61</td>
<td>11.03</td>
<td>0.95</td>
</tr>
<tr>
<td>10</td>
<td>Soluble</td>
<td>77</td>
<td>0.068</td>
<td>0.016</td>
<td>1.33</td>
<td>0.32</td>
<td>13.04</td>
<td>0.03</td>
<td>5.08</td>
<td>1.03</td>
<td>10.83</td>
<td>0.62</td>
</tr>
<tr>
<td>10</td>
<td>Dissolved</td>
<td>77</td>
<td>0.439</td>
<td>0.008</td>
<td>2.78</td>
<td>0.37</td>
<td>12.15</td>
<td>0.12</td>
<td>5.91</td>
<td>4.08</td>
<td>10.84</td>
<td>0.04</td>
</tr>
<tr>
<td>10</td>
<td>Soluble</td>
<td>84</td>
<td>0.071</td>
<td>0.004</td>
<td>1.80</td>
<td>0.02</td>
<td>12.64</td>
<td>0.16</td>
<td>4.64</td>
<td>1.31</td>
<td>11.67</td>
<td>0.18</td>
</tr>
<tr>
<td>10</td>
<td>Dissolved</td>
<td>84</td>
<td>0.222</td>
<td>0.058</td>
<td>2.64</td>
<td>0.00</td>
<td>12.12</td>
<td>0.45</td>
<td>6.28</td>
<td>0.73</td>
<td>10.89</td>
<td>0.38</td>
</tr>
<tr>
<td>10</td>
<td>Soluble</td>
<td>111</td>
<td>0.046</td>
<td>0.015</td>
<td>1.51</td>
<td>0.00</td>
<td>12.04</td>
<td>0.06</td>
<td>1.03</td>
<td>0.00</td>
<td>10.91</td>
<td>0.05</td>
</tr>
<tr>
<td>10</td>
<td>Dissolved</td>
<td>111</td>
<td>0.154</td>
<td>0.006</td>
<td>1.65</td>
<td>0.00</td>
<td>12.67</td>
<td>0.23</td>
<td>1.71</td>
<td>0.19</td>
<td>11.05</td>
<td>0.15</td>
</tr>
<tr>
<td>23</td>
<td>Soluble</td>
<td>3</td>
<td>0.094</td>
<td>0.004</td>
<td>1.26</td>
<td>0.25</td>
<td>12.60</td>
<td>0.25</td>
<td>4.84</td>
<td>0.29</td>
<td>11.19</td>
<td>0.32</td>
</tr>
<tr>
<td>23</td>
<td>Dissolved</td>
<td>3</td>
<td>0.441</td>
<td>0.005</td>
<td>1.87</td>
<td>0.58</td>
<td>12.88</td>
<td>0.36</td>
<td>5.12</td>
<td>0.70</td>
<td>11.26</td>
<td>0.00</td>
</tr>
<tr>
<td>23</td>
<td>Soluble</td>
<td>51</td>
<td>0.032</td>
<td>0.007</td>
<td>1.65</td>
<td>0.34</td>
<td>12.12</td>
<td>0.03</td>
<td>5.29</td>
<td>0.57</td>
<td>10.85</td>
<td>0.49</td>
</tr>
<tr>
<td>23</td>
<td>Dissolved</td>
<td>51</td>
<td>0.347</td>
<td>0.002</td>
<td>1.76</td>
<td>0.25</td>
<td>12.62</td>
<td>0.14</td>
<td>6.69</td>
<td>2.14</td>
<td>10.99</td>
<td>0.75</td>
</tr>
<tr>
<td>23</td>
<td>Soluble</td>
<td>77</td>
<td>0.025</td>
<td>0.007</td>
<td>1.01</td>
<td>0.08</td>
<td>12.51</td>
<td>0.69</td>
<td>7.25</td>
<td>0.21</td>
<td>10.57</td>
<td>0.01</td>
</tr>
<tr>
<td>23</td>
<td>Dissolved</td>
<td>77</td>
<td>0.122</td>
<td>0.005</td>
<td>1.34</td>
<td>0.03</td>
<td>13.13</td>
<td>0.19</td>
<td>7.55</td>
<td>0.51</td>
<td>10.59</td>
<td>0.34</td>
</tr>
<tr>
<td>23</td>
<td>Soluble</td>
<td>129</td>
<td>0.065</td>
<td>0.002</td>
<td>1.26</td>
<td>0.21</td>
<td>12.80</td>
<td>0.08</td>
<td>4.37</td>
<td>0.07</td>
<td>10.84</td>
<td>0.13</td>
</tr>
<tr>
<td>23</td>
<td>Dissolved</td>
<td>129</td>
<td>0.344</td>
<td>0.009</td>
<td>1.93</td>
<td>0.03</td>
<td>12.64</td>
<td>0.27</td>
<td>4.88</td>
<td>4.86</td>
<td>10.87</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Fig. 3. The partitioning of Fe and Fe-binding ligands in the dissolved (<0.2 μm, solid circles, solid lines), soluble (<10 kDa, open circles, solid lines), and colloidal (10 kDa–0.2 μm, gray circles, dotted lines) at (a) Station 10 (BATS) and (b) Station 23 (near Cape Verde). The gray line is the fluorescence trace, and the maximum fluorescence is designated as the deep chlorophyll maximum (DCM). All error bars are ±1 standard deviation.
concentrations in the soluble and dissolved size fractions always exceeded their respective Fe concentrations so that the dissolved and soluble Fe ligand concentrations reported are free ligands not bound to Fe (excess L1 concentrations were 1.2–2.0 nM soluble and 1.2–2.5 nM dissolved at Station 10; 1.0–1.6 nM soluble and 1.2–1.6 nM dissolved at Station 23). While these excess L1 ligand concentrations are typical of open ocean conditions (Buck et al., 2012) and thus not surprising in the dissolved and soluble phases of this study, colloidal L1 (calculated as dissolved L1, Table 2) had lower concentrations than cFe at many depths, resulting in negative excess colloidal L1 concentrations (Fig. 3). This reinforces the major result that colloidal ligands were very low in concentration and also suggests that the cFe present was bound to weaker ligands than the sFe.

Electrochemical ligand detection is a function of the analytical window utilized, which is established by the concentration and binding strength of the competing ligand added during the titration, defined in this study as \(\alpha_{\text{FeL}} = \frac{[\text{FeL}]}{[\text{FeL}'] [\text{Fe}]}\). At the lower analytical window used in this study (\(\alpha_{\text{FeL}} = 60\), Table 1), both ligand classes were preferentially partitioned into the soluble size fraction: soluble L1 ligands ranged from 1.0 to 2.1 nM and averaged 77 ± 17% of the dissolved L1 ligands (1.65–2.65 nM) at Station 10 and 75 ± 13% of the dissolved L1 ligands (1.35–1.95 nM) at Station 23, while total (L1 + L2) soluble ligands ranged from 2.5 to 8.3 nM and averaged 78 ± 7% of the total dissolved ligands at Station 10 (3.0–9.0 nM) and 86 ± 5% of the total dissolved ligands at Station 23 (6.8–8.9 nM). At the higher analytical window (\(\alpha_{\text{FeL}} = 100\), Table 2) where stronger ligands could be detected, the pattern of excess soluble ligands was the same: soluble L1 ligands comprised 77 ± 12% and 93 ± 7% of the total L1 ligands detected at Stations 10 and 23, respectively. Only at the DCM of Station 10 did colloidal ligands comprise the greatest portion of total dissolved ligands (Fig. 3).

The \(K_{\text{FeL'}}\) values for the two ligand classes had variable size partitioning patterns, both within a single station and across the two stations (Fig. 3). At Station 10, log \(K_{\text{FeL'}}\) values were not significantly different between the two size fractions, except near the DCM where log \(K_{\text{FeL'}}\) was greater at ~13 for the soluble size fraction and nearer to ~12 for the total dissolved size fraction, indicating that colloidal ligands were weaker at this depth. At Station 23, log \(K_{\text{FeL'}}\) values were identical between the two size fractions, while log \(K_{\text{FeL}}\) values were slightly higher in the colloidal fraction than in the soluble fraction at most depths.

Using the size partitioned Fe-ligand binding strength and concentration data together, we determined the capacity for the free Fe-binding ligands in each size fraction to bind Fe, \(\alpha_{\text{FeL'}}\):

\[
\alpha_{\text{FeL'}} = 1 + \frac{[\text{FeL}_1] \times [K_1]}{[\text{FeL}_2] / [K_2]}
\]

(3)

where the concentration of excess \(L_1 ([\text{FeL}_1])\) is the \(L_1\) not already bound to Fe:

\[
[\text{FeL}_1] = [L_1] - [\text{Fe}].
\]

(4)

This \(\alpha_{\text{FeL'}}\) was calculated for each size fraction and is shown in Fig. 3. The total dissolved \(\alpha_{\text{FeL'}}\) was greater than the soluble \(\alpha_{\text{FeL'}}\) at most depths of Station 23, indicating that the colloidal ligands had at least some capacity to bind Fe. Only at the deepest (129 m) depth of Station 23 was the dissolved \(\alpha_{\text{FeL'}}\) the same as the soluble \(\alpha_{\text{FeL'}}\), indicating that the colloidal ligands had no capacity to bind new Fe at this depth. At the DCM of Station 10, in contrast, the soluble \(\alpha_{\text{FeL'}}\) was greater than the dissolved \(\alpha_{\text{FeL'}}\). Which was related to the greater log \(K_{\text{FeL'}}\) values calculated for the soluble ligands than the total dissolved ligands at these depths (Table 3).

The primary objective of this study, however, was to determine whether the size partitioning of organic Fe-binding ligands in the upper ocean would predict the observed size partitioning of dFe. Thus, following Cullen et al. (2006), we modeled the fraction of total dFe expected to exist in the soluble phase at equilibrium with the observed size fractionated ligands:

\[
\frac{\text{Fe}_{\text{sol}}}{\text{Fe}_{\text{diss}}} = \frac{\alpha_{\text{FeL'}}_{\text{sol}}}{\alpha_{\text{FeL'}}_{\text{diss}}} = \frac{[K_1 / [\text{FeL}_1] + [K_2 / [\text{FeL}_2]]_{\text{sol}}}{[K_1 / [\text{FeL}_1] + [K_2 / [\text{FeL}_2]]_{\text{diss}}}.
\]

(5)

If dFe is organically bound to ligands with the same concentration and strength as calculated using the \(\alpha_{\text{FeL'}}\) value of the observed free ligands, then the modeled partitioning should match the observed dFe partitioning (in this case, the left-most and the right-most panels of Fig. 3 should match).

We also compared the modeled and observed soluble Fe partitioning fractions in Fig. 4, and the observed sFe fractions all fell below the modeled-observed 1:1 line, indicating that the size partitioning of organic ligands as measured by electrochemistry does not predict the observed dFe size partitioning in the upper ocean of either station.
3.2. Mass-balance of Fe-binding ligands using CFF

It is well known that Fe recovery during CFF can be low (Reitmeyer et al., 1996), and using the same low-surface area, regenerated cellulose cross flow filtration system as in this study, Fitzsimmons and Boyle (2014a) suffered a 25–30% dFe loss to the surface and/or pores of the CFF filter. They used various lines of evidence to propose that it was only the colloidal fraction that was lost/trapped in the filter membrane, while sFe was fully recovered in the permeate solution. It was important to prove that this was also true for the free and bound Fe-binding ligand fractions in order to provide accurate calculations in this study.

Thus, the mass balance of Fe-binding ligands during CFF was determined at 15 m depth at Station ALOHA (22.75°N, 158°W) in the Pacific Ocean (Table 4). Fe concentration and Fe-binding ligand concentration and strength were measured for the permeate, retentate, and initial CFF feed solutions. The soluble Fe and Fe-binding ligand concentrations were assumed to be equal to that found in the permeate (ideal permeation characteristics of the CFF membrane were assumed here, as they were for Fe concentrations in Fitzsimmons and Boyle, 2014a), and the initial CFF feed solution was set equal to the "dissolved" fraction. Colloidal Fe and ligand concentrations derived from the CFF system were calculated using Eqs. (1)–(2). Using the definitions of soluble and colloidal sizes, soluble Fe (defined here as <10 kDa) plus colloidal Fe (defined here as between 10 kDa and 0.2 μm) should equal dissolved Fe (defined as < 0.2 μm). Thus, the measured "soluble + colloidal" concentration was compared to the measured dissolved concentration in the CFF feed solution to determine the mass balance:

\[
\%\text{Recovery} = \frac{[\text{Soluble}]_{\text{meas}} + [\text{Colloidal}]_{\text{meas}}}{[\text{Feed solution}]_{\text{meas}}} \times 100\%.
\]

These calculations were completed for the Fe concentration, ligand concentration, and excess ligand concentration (Table 4). The Fe recovery from the CFF system was low at 54 ± 27%, which is within error of the average 70–75% mass balance for Fe concentration recorded using the same system by Fitzsimmons and Boyle (2014a) across several sampling sites in the Pacific and Atlantic Oceans. The large 27% error is attributed to the extremely low concentrations of sFe (0.039 ± 0.008) measured at this station. The total ligand recovery was quite similar at 65 ± 27%, and when only the excess ligand is considered, the recovery was 69 ± 34%. Since the recoveries were so similar between Fe and L concentrations, we can safely assume that the same mechanism that causes cFe loss to the CFF membrane, which Fitzsimmons and Boyle
was not the case: observed free Fe-binding ligands were primarily bound by organic ligands. It is clear from the results of Figs. 3 and 4 that this observed surface dFe size partitioning, then surface dFe is likely bound. We based our interpretation of these size fractionated ligand results on the hypothesis that if the size partitioning of free surface ligands in our electrochemical measurements, or (2) some portion of the cFe in the surface ocean is inorganic in composition (not controlled by equilibrium with a size-partitioned set of free organic ligands, as our calculations assume).

With these results, we aimed to explore the chemical composition of the colloidal Fe maximum found in surface waters underlying the North African dust plume, the excess ligands in these same waters are instead partitioned into the soluble size fraction. This pattern was repeated at the two stations studied in the North Atlantic Ocean, which both received significant dust fluxes that varied two orders of magnitude in Fe loading and also in aerosol source. Variable size fractionation of Fe-binding ligands with depth and location has also been observed in the upper 200 m by Boye et al. (2010) in the Southern Ocean (200 kDa filter used), by Thuróczy et al. (2010) in the Northeast Atlantic Ocean (1000 kDa filter used), and by Cullen et al. (2006) in the North and South Atlantic Oceans (0.02 μm filter used).

With these results, we aimed to explore the chemical composition of the colloidal Fe maximum found in surface ocean regions underlying dust plumes, particularly whether it is organically or inorganically bound. We based our interpretation of these size fractionated ligand results on the hypothesis that if the size partitioning of free surface Fe-binding ligands into soluble and colloidal fractions predicted the observed surface dFe size partitioning, then surface dFe is likely bound by organic ligands. It is clear from the results of Figs. 3 and 4 that this was not the case: observed free Fe-binding ligands were primarily soluble, while observed dFe was mostly colloidal in size. This does not preclude an organic composition of the colloidal Fe in the dusty surface North Atlantic. However, it must mean that either (1) we are missing a fraction of free colloidal ligands in our electrochemical measurements, or (2) some portion of the cFe in the surface ocean is inorganic in composition (not controlled by equilibrium with a size-partitioned set of free organic ligands, as our calculations assume).

Table 4
Fe and Fe-binding ligand mass balance using cross flow filtration at 15 m depth at Station ALOHA in the Pacific Ocean.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured permeate (“soluble”), < 10 kDa</td>
<td>0.039</td>
<td>0.008</td>
<td>0.300</td>
<td>0.008</td>
<td>0.262</td>
<td>0.011</td>
</tr>
<tr>
<td>Measured retentate</td>
<td>0.153</td>
<td>0.002</td>
<td>0.552</td>
<td>0.072</td>
<td>0.399</td>
<td>0.072</td>
</tr>
<tr>
<td>Measured CFF feed (“dissolved”), 0.2 μm</td>
<td>0.176</td>
<td>0.014</td>
<td>0.654</td>
<td>0.032</td>
<td>0.478</td>
<td>0.035</td>
</tr>
<tr>
<td>Calculated “colloidal” (Eqs. (1) and (2))</td>
<td>0.057</td>
<td>0.008</td>
<td>0.126</td>
<td>0.072</td>
<td>0.068</td>
<td>0.073</td>
</tr>
<tr>
<td>Calculated soluble + colloidal</td>
<td>0.096</td>
<td>0.012</td>
<td>0.426</td>
<td>0.072</td>
<td>0.330</td>
<td>0.073</td>
</tr>
<tr>
<td>% recovery</td>
<td>54.5%</td>
<td>27%</td>
<td>65.1%</td>
<td>27%</td>
<td>69.1%</td>
<td>34%</td>
</tr>
</tbody>
</table>

4. Discussion
The results of this study demonstrate that while dFe falls predominantly into the colloidal size fraction in surface waters underlying the North African dust plume, the excess ligands in these same waters are instead partitioned into the soluble size fraction. This pattern was repeated at the two stations studied in the North Atlantic Ocean, which both received significant dust fluxes that varied two orders of magnitude in Fe loading and also in aerosol source. Variable size fractionization of Fe-binding ligands with depth and location has also been observed in the upper 200 m by Boye et al. (2010) in the Southern Ocean (200 kDa filter used), by Thuróczy et al. (2010) in the Northeast Atlantic Ocean (1000 kDa filter used), and by Cullen et al. (2006) in the North and South Atlantic Oceans (0.02 μm filter used).

With these results, we aimed to explore the chemical composition of the colloidal Fe maximum found in surface ocean regions underlying dust plumes, particularly whether it is organically or inorganically bound. We based our interpretation of these size fractionated ligand results on the hypothesis that if the size partitioning of free surface Fe-binding ligands into soluble and colloidal fractions predicted the observed surface dFe size partitioning, then surface dFe is likely bound by organic ligands. It is clear from the results of Figs. 3 and 4 that this was not the case: observed free Fe-binding ligands were primarily soluble, while observed dFe was mostly colloidal in size. This does not preclude an organic composition of the colloidal Fe in the dusty surface North Atlantic. However, it must mean that either (1) we are missing a fraction of free colloidal ligands in our electrochemical measurements, or (2) some portion of the cFe in the surface ocean is inorganic in composition (not controlled by equilibrium with a size-partitioned set of free organic ligands, as our calculations assume).

Table 5
Mass balance-calculated colloidal ligand characteristics (at αFe/SA = 60) and the additional “kinetically-inhibited” colloidal L2 concentrations required to explain the observed dFe size partitioning at equilibrium.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>0.452</td>
<td>0.010</td>
<td>0.21</td>
<td>0.29</td>
<td>13.22</td>
<td>0.12</td>
<td>0.05</td>
<td>12.50</td>
<td>13.81</td>
</tr>
<tr>
<td>10</td>
<td>46</td>
<td>0.537</td>
<td>0.036</td>
<td>0.33</td>
<td>0.63</td>
<td>-</td>
<td>0.88</td>
<td>0.27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>62</td>
<td>0.461</td>
<td>0.005</td>
<td>0.35</td>
<td>0.20</td>
<td>13.19</td>
<td>1.96</td>
<td>0.81</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>77</td>
<td>0.371</td>
<td>0.018</td>
<td>1.46</td>
<td>0.49</td>
<td>-</td>
<td>0.83</td>
<td>4.21</td>
<td>10.89</td>
<td>59.57</td>
</tr>
<tr>
<td>10</td>
<td>84</td>
<td>0.152</td>
<td>0.058</td>
<td>0.84</td>
<td>0.02</td>
<td>-</td>
<td>1.65</td>
<td>1.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>111</td>
<td>0.108</td>
<td>0.016</td>
<td>0.14</td>
<td>0.00</td>
<td>13.63</td>
<td>0.68</td>
<td>0.19</td>
<td>11.20</td>
<td>-0.33</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>0.347</td>
<td>0.006</td>
<td>0.61</td>
<td>0.63</td>
<td>13.17</td>
<td>0.28</td>
<td>0.76</td>
<td>11.83</td>
<td>1.63</td>
</tr>
<tr>
<td>23</td>
<td>51</td>
<td>0.316</td>
<td>0.007</td>
<td>0.11</td>
<td>0.42</td>
<td>13.67</td>
<td>1.40</td>
<td>2.22</td>
<td>11.31</td>
<td>4.72</td>
</tr>
<tr>
<td>23</td>
<td>77</td>
<td>0.027</td>
<td>0.009</td>
<td>0.33</td>
<td>0.09</td>
<td>13.65</td>
<td>0.30</td>
<td>0.55</td>
<td>10.96</td>
<td>0.03</td>
</tr>
<tr>
<td>23</td>
<td>129</td>
<td>0.279</td>
<td>0.009</td>
<td>0.67</td>
<td>0.21</td>
<td>11.85</td>
<td>0.51</td>
<td>4.86</td>
<td>11.07</td>
<td>7.63</td>
</tr>
</tbody>
</table>
not oceanographically consistent (13–60 nM). Notably, the lowest concentrations of “missing colloidal ligands” were calculated to occur at or immediately below the DCM, which is consistent with expectations, since it is at these depths that more of the dFe was of soluble size.

These missing ligands would need to be unbound colloidal-sized ligands that bind dFe in the ocean with kinetics more sluggish than the 2 hour equilibration time of our CLE-ACSV measurement. Our assumption that these ligands have a binding strength of the measured colloidal K2 is the weakest assumption in our calculation. If the colloidal ligands were significantly stronger than assumed, our estimated missing colloidal [L] concentrations would be overestimated, which may explain the oceanographically inconsistent values calculated for Station 10. Another possibility, however, is that a high concentration of relatively weak, inert colloidal ligands is reflected in the electrochemical data as a low concentration of a strong ligand instead. This might be the case if the cFe is partitioned into a ligand pool with no effective “free” ligand; in other words, the ligands binding the cFe do not have the capacity to take up any additional added Fe. It might only be possible to exchange Fe with this relatively “inert” pool if extremely long equilibration times are used or if higher analytical windows are employed, which would “outcompete” all other natural ligands in the sample (Kogut and Voelker, 2001). It was not clear from our use of slightly higher analytical window whether this was the case (Fig. 4).

An alternative explanation is that a portion of the cFe is not in fact chelated by organic ligands but is inorganic, nanoparticulate cFe. Dust-derived surface dFe tends to be colloidal (Bergquist et al., 2007; Fitzsimmons and Boyle, 2014b; Fitzsimmons et al., in press), and while it could be bound by organic ligands of colloidal size, it could also be composed of physically eroded nanoparticulate fragments of dust and/or nanoparticulate Fe oxyhydroxides precipitated or aggregated in situ after aerosol Fe dissolves. This inorganic cFe would not be expected to adsorb to the electrochemical mercury drop nor exchange Fe with the added ligand, and thus electrochemistry would interpret this cFe as organically bound by a strong ligand (L1). In this paper we modeled the predicted size partitioning of dFe using the size partitioning of the “excess” Fe-binding ligands; however, nanoparticulate Fe would not have an “excess” or “free” ligand pool that could represent it in these calculations. In other words, our Eq. (5) calculations would not capture the “potential” to form nanoparticulate cFe that an unbound colloidal-sized ligand would. Thus, we would expect that if a significant portion of cFe was nanoparticulate, then we would see the exact results observed in Fig. 3: ligand partitioning enriched in soluble-sized free compounds, while instead more of the dFe is colloidal.

However, we must consider the observation that the relative aerosol dFe input to the eastern basin at Station 23 was higher than at Station 10 in the western Atlantic, assuming the measured aerosol Fe loading and solubility (Shelley et al., in review). As a result of this, if cFe included a significant nanoparticulate component we might have expected more cFe and an additional “missing colloidal ligand” at Station 23 in the east than at Station 10 in the west. However, the observed size partitioning of dissolved Fe and Fe-binding ligands at both stations was the same, with no enhanced dust-derived effects at the duster Station 23. One explanation for this inconsistency is that the aerosol Fe samples collected on this cruise were measured on 1–3 day timescales that are much shorter than the surface ocean residence time of dFe in the tropical North Atlantic (0.2–5 months; Bergquist and Boyle, 2006; Croot et al., 2004); thus, any dust deposition in up to the previous 5 months at Station 10 would still be evident in the dFe and Fe-binding ligands of surface waters but not in the real-time dust collection from the cruise. It is worth noting that the surface dFe concentration at both stations was elevated and similar in concentration (0.45–0.55 nM), likely reflecting recent aerosol Fe addition, and thus it might not be unreasonable to expect similar dust-driven patterns in dFe and Fe-ligand size partitioning at both stations. In fact, higher surface dissolved aluminum concentrations near Station 10 compared to Station 23 further support that aerosols significantly influence surface seawater chemistry at both stations (Measures et al., in press). Additionally, the higher dust loadings near the African continent serve not only to add dFe from dust but also to scavenge dFe onto the increased lithogenic particle loads falling through this water column, potentially creating a lower-than-expected dFe addition when both dust source and scavenging are considered. These differences in sampling timescale, residence time, and influence of circulation/scavenging all may explain why dFe physicochemical speciation might not be very different between the two stations studied, despite the large apparent short-term differences in dust loading between Stations 10 and 23 measured during the cruise.

Alternatively, a lack of difference in dFe and Fe-binding ligand size partitioning between the two stations may suggest that it is actually the fact that the electrochemical methods that are missing a portion of the colloidal ligand pool that is to blame for the divergent size fractionation of Fe and Fe-binding ligands in the surface ocean, not an inorganic cFe phase. In fact, Cullen et al. (2006) observed the same Fe and Fe-ligand partitioning patterns (but to a lesser extent) in surface waters of the tropical Atlantic, and they concluded that electrochemical methods were missing an “inert” pool of colloidal Fe ligands. Our observed data deviates much more substantially from the ligand-modeled data than Cullen et al. (2006) observed, but this may be explained by the higher analytical window employed by Cullen et al. (2006), which would be better at capturing stronger ligands. A much higher competition strength was used in that study (αFe(TAC) = 271) compared to those used here (αFe(SO4) = 60, 100), and in fact the higher analytical window in this study compares slightly better with the measured Fe partitioning (Table 3). This is an indication that at least some portion of the colloidal ligand pool may be very strong — either a very strong organic Fe-binding ligand of colloidal size or a relatively inert inorganic cFe species.

In addition to a kinetic mechanism of poor chemical lability, a steric hindrance may also prevent the cFe ligands from being detected. In (1994), Mackey and Zirino presented the “ionion model” in which trace metals in the ocean are bound by concentric layers of organic compounds held together by hydrogen and other coordination bonds. Thus, Fe may become sterically “trapped” inside a colloidal-sized organic matrix (which it does not have to bind particularly strongly to) that passes through our 0.2 μm filters and so is detected as dFe but is physically prevented from exchanging with the added ligand. While they might bind Fe in nature given time and the physical mixing of the surface ocean, these same “onion” organic compounds in their unbound form in our samples might not bind Fe strongly or quickly enough during the time of electrochemical equilibration to reveal their true “binding potential” in nature.

Thus, our size partitioning Fe ligand results showed that in surface locations underlying the North African dust plume, the labile organic Fe-binding ligands detected by CLE-ACSV were overwhelmingly partitioned into the soluble size fraction and do not predict the colloidal Fe composition of dFe observed. This suggests that the “binding potential” of a significant unbound colloidal ligand fraction is missed by current electrochemical techniques. We hypothesize that this “missing cFe” is composed of either nanoparticulate cFe (eroded dust fragments or in situ precipitated Fe oxyhydroxide aggregates) that has no “excess ligand”–like binding potential and is thus missed by our equilibrium physicochemical speciation model or a kinetically-slow or sterically–hindered organic ligand of colloidal size. In short, attempting to unveil the physicochemical speciation of an Fe atom upon new Fe input (such as a dust event) is challenging using electrochemical techniques because the true “binding potential” of colloidal ligands is not fully captured by the CLE-ACSV method used in this study. Further assessment and prediction of the composition and fate of dust-derived upper ocean dFe awaits new analytical methods that can chemically evaluate the binding environment of marine dFe species across their size spectrum.
5. Conclusions

We evaluated the organic speciation of soluble (<10 kDa) and dissolved (<0.2 μm) Fe at a western and eastern station in the subtropical North Atlantic Ocean. We found that while the majority of the dFe was colloidal sized (10 kDa–0.2 μm), most of the excess organic ligands were soluble sized, indicating that the size partitioning of labile organic Fe-binding ligands does not directly predict the observed size partitioning of dFe. While our ultrafiltration methods did lose 35 ± 27% of the organic ligands to the cross flow filtration membrane, the soluble ligands were inferred to permeate the membrane fully, and thus the filtration method was not the cause of the ligand and Fe size divergence. Two possible explanations were offered. First, our CLE-ACSV method could be missing some of the free colloidal sized ligands if they are kinetically limited to reaction times greater than the equilibration time of our method (2 h). This could be caused by true kinetic limitation or steric hindrance, and these ligands would have to be 1) unbound in the sample (or CLE-ACSV would detect them), 2) have the potential to bind Fe in nature (presumably composing a portion of the existing cFe), but 3) bind Fe slower than the timescale of CLE-ACSV equilibration (which is why they were not detected). Alternatively, some of the cFe could be inorganic in composition, which would not provide an “excess” ligand pool that could be modeled to predict the dFe size partitioning accurately, as attempted here.

Acknowledgments

We would like to thank Gonzalo Carrasco and Pete Morton for their help in collecting and filtering seawater on the GA03 North Atlantic GEOTrACES cruise, and we thank Rene Boiteau and Dan Repeta for the usage of their deck pump and Chris Hayes for his help at sea on the HOE-PhoR-II cruise to Station ALOHA. We also thank the ODF team, usage of their deck pump and Chris Hayes for his help at sea on the

References

Aguilar-Islas, A.M., Mehalek, A., 2013. Aerosol Fe solubility from field and lab-based leaching protocols. U.S. GEOTrACES Post-Cruise Data Workshop. Old Dominion University, Norfolk, VA.

Schlosser, C., Croot, P.L., 2008. Application of cross-

